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context 

Relativistic fluid dynamics can be applied to a 
range of problems in astrophysics and high-
energy physics. 

General Relativity is key to problems where 
the influence of gravity cannot be ignored; 

-  black holes  

-  neutron stars  

-  cosmology 

Covariant variational framework provides a 
conceptually elegant description that helps 
understanding of complex systems. 

Electromagnetism is easily incorporated in the 
formalism. 

A number of interesting problems requires 
resistivity. 



variational approach 

Maxwell’s equations can be obtained by varying the action 

 

 

where the Lagrangian is (for a “passive” medium) 

 

 

where ja is the (c0nserved) charge current, and the (anti-symmetric) Faraday 
tensor given by; 

 

The variation is taken with respect to the vector potential Aa.  

Note: The physical fields depend on the observer. 

 

Question: How do you couple the electromagnetic field to a charged fluid? 

 

I. INTRODUCTION

Paranormal, adjective, denoting events [...] that are beyond the scope of normal scientific

understanding [oxforddictionaries.com].

II. LAGRANGIAN FOR GENERAL MEDIA

General EM action

IEM =

�
LEM

√
−g d

4
x (1)

where the Lagrangian takes the form

LEM = −1

8
χ
abcd

FabFcd + j
a
Aa (2)

where the Faraday tensor is defined in terms of the vector potential Aa, as usual

Fab = ∇aAb −∇bAa (3)

and where j
a is the (conserved) current.

If we also define

H
ab = −2

∂LEM

∂Fab
=

1

2
χ
abcd

Fcd (4)

then we have

LEM = −1

4
H

ab
Fab + j

a
Aa (5)

The tensor χ
abcd encodes how the material is affected by the presence of the magnetic

field. It can, in principle, depend on Fab but as a first approximation we will assume that it

does not. This still allows us to consider a wide range of relevant models.

III. MAXWELL’S EQUATIONS

First of all, we still have (from symmetry)

∇[aFbc] = 0 (6)

Using the standard decomposition, associated with an observer moving with four-velocity

u
a, we have

Fab = uaEb − ubEa + �abcdu
c
B

d (7)
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B. Electromagnetism

Let us now consider electromagnetism in Einstein’s theory. As usual [8], we construct the

relativistic version of Maxwell’s equations by means of a variational argument with respect

to the vector potential Aa
. The corresponding Lagrangian is built from the anti-symmetric

Faraday tensor;

Fab = 2∇[aAb] . (20)

We also need to couple the electromagnetic field to the matter flow, represented by the charge

current ja. Letting the relevant coupling constant be µ0, the action takes the form [57]

IEM =

�
LEM

√
−g d4x , (21)

with

LEM = − 1

4µ0
FabF

ab
+ jaAa . (22)

However, the current term in this expression is not gauge-invariant. Under a gauge transfor-

mation of the vector potential, i.e. exercising the freedom to add the gradient of an arbitrary

scalar field ψ, the second term in (22) transforms as

jaAa → jaAa + ja∇aψ = jaAa +∇a (ψj
a
)− ψ (∇aj

a
) . (23)

The second term on the right-hand side will contribute a surface term to the action integral,

and hence can be “ignored” in the usual way. The third term is different. In order to ensure

that the action is gauge-invariant, we must demand that the current is conserved, i.e. that

∇aj
a
= 0 . (24)

The field equations that we derive require that this constraint be satisfied.

With an action in hand it is straightforward to work out the variation with respect to

the vector potential (keeping ja fixed!), and we arrive at the standard result;

∇bF
ab
= µ0j

a . (25)

The relativistic Maxwell equations are completed by

∇[aFbc] = 0 , (26)

which is automatically satisfied given the anti-symmetry of Fab.
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Make use of the convective variational approach developed by Carter and 
collaborators. Consider a single (uncharged) fluid as an example. Then we have 
the action; 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Rearrange the variation and neglect “surface terms” to arrive at the final result.  

 

 

 

 

 

 

 

 

 

where Λ=Λ(n) and the conjugate 
momentum μa is determined by the 
variation 

 

 

The variation is constrained by 
focussing on displacements ξa that 
keeps the flux na conserved. This leads 
to  
 

convective variations 

In the inertial frame associated with the observer, we have

∇aB
a = 0 (8)

and

Ḃ
a + �

abc∇bEc = 0 (9)

where we have introduced Ḃ
a = u

b∇bB
a and �

abc = �
dabc

ud in order to make the final

equations resemble Maxwell’s equation in their standard three-dimensional form.

The second pair of equations follow from variation of LEM with respect to the vector

potential. Assuming that χabcd does not depend on Aa, this leads to

∇bH
ab = j

a (10)

In this case, the decomposition

Hab = uaDb − ubDa + �abcdu
c
H

d (11)

leads to

∇aD
a = σ (12)

and

Ḋ
a − �

abc∇bHc = −J
a (13)

where we have decomposed the charge current as

j
a = σu

a + J
a
, with J

a
ua = 0 (14)

We have arrived at the general form of Maxwell’s equations, relevant for magnetised

and/or polarised media. Key questions at this point concern the coupling to any matter

flow, and the form of the stress-energy tensor that couples the electromagnetic field to the

dynamical spacetime of Einstein’s theory.

IV. THE SINGLE FLUID CASE

Let us focus on the case of a single (charged) fluid as a suitably simple example. Then

we have a matter action

IM =

�
Λ
√
−g d

4
x (15)

3

where Λ = Λ(n), and

δΛ = µaδn
a
+

1

2
n
a
µ
b
δgab (16)

That is, the canonical momentum is given by

µa =
∂Λ

∂na
=

∂Λ

∂n2

∂n
2

∂na
= −2

∂Λ

∂n2
na = Bna (17)

Recall that the convective variation is not with respect to the flux itself, but the dis-

placement ξ
a
which ensures that the flux remains conserved [LIVREV]. This means that we

have

δn
a
= n

b∇bξ
a − ξ

b∇bn
a − n

a

�
∇bξ

b
+

1

2
g
bc
δgbc

�
(18)

Using this, the constrained variation leads to

δ
�
Λ
√
−g

�
=

√
−g

�
2ξ

a
n
b∇[aµb] +

1

2

�
Ψg

ab
+ n

a
µ
b
�
δgab

�
(19)

where

Ψ = Λ− n
a
µa (20)

is the (fluid) pressure.

From this we see that the fluid equations of motion are

2n
b∇[aµb] = 0 (21)

while the stress-energy tensor takes the form

T
ab
= Ψg

ab
+ n

a
µ
a

(22)

V. THE ELECTROMAGNETIC STRESS-ENERGY TENSOR

We obtain the stress-energy tensor by varying the electromagnetic action with respect to

the spacetime metric gab. After some algebra, this leads to

T
EM
ab =

1

4

��
∂χ

cdef

∂gab

�
FcdFef − gabH

cd
Fcd

�
(23)

CHECK: How does this affect

∇aT
ab
EM = −jaF

ba
(24)

Note the rather confused discussion in the literature.
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When the Euler equation is satisfied then it is automatically true that the 
divergence of the stress-energy tensor vanishes. 
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It is (relatively) straightforward to extend the constrained variation to charged 
fluids.  

Let us consider the general case with a number of (conserved) fluxes carrying 
charges. Then we have 

 

and the variational approach leads to 

 

 

where 

 

and the stress-energy tensor is 

 

 

 
 

 

 

 

 

 

 

 

 

 

a comfortable marriage 

To derive the equations of motion for coupled charged fluids, we add the non-magnetic

Lagrangian Λ to the electromagnetic contribution. That is, we consider a matter action

IM =

�
Λ
√
−g d4x (31)

If the system is isotropic, then the matter Lagrangian will be a function on of the scalars

n2
x = −gabn

a
xn

b
x (32)

and

n2
xy = −gabn

a
xn

b
y , x �= y (33)

The latter encodes the entrainment effect, which can play a central role in multifluid systems.

Finally, letting each component carry a charge qx per particle, we have the total charge

current

ja =
�

x

qxn
a
x (34)

In Carter’s variational model, the fluid momenta follow from a variation of all contribu-

tions to the Lagrangian that involve the matter field, in this case Λ+ LEM, with respect to

the na
x fluxes. The only difference from the discussion in the previous section is that we now

have a number of fluxes to keep fixed. This leads to a set of displacements ξax associated

with the individual δna
x, generalising (18) in the obvious way.

Thus we find that the momenta are given by

µ̃x
a = µx

a −
1

8
FcdFef

�
∂χcdef

∂na
x

�
+ qxAa (35)

or

µ̃x
a = µx

a +
1

4

�
∂χcdef

∂n2
x

�
FcdFefn

x
a + qxAa (36)

or, perhaps,

µ̃x
a =

�
Bx +

1

4

�
∂χcdef

∂n2
x

�
FcdFef

�
nx
a +

�

y �=x

Axyny
a + qxAa (37)

where [define Bx etcetera].

Given the momenta, the equations of motion follow from

2na
x∇[aµ̃

x
b] = 0 (38)

or

2na
x∇[aµ̄

x
b] = 2jax∇[bAa] = jaxFba (39)

6

A key point here is that the current term in (2) does not affect the (total) stress-energy

tensor. As this issue may cause confusion, it is worth demonstrating the result in detail. To

do this, let us focus on the contribution to the action from the matter-field coupling;

IC =

�
jaAa

√
−g d4x (25)

For the sake of the argument, let us assume that we are dealing with a single particle species

with charge q per particle (it is easy to see that the result in the general case follows from

the same argument). Then we have

ja = qna
(26)

Variation of the integrand then leads to

δ
�
naAa

√
−g

�
=

√
−g [Aaδn

a
+ naδAa] + naAaδ

√
−g (27)

Naively, the first terms affects the Euler equation, the second leads to the current term in

the Maxwell equations and the final term should enter the stress energy tensor, since

δ
√
−g =

1

2

√
−ggabδgab (28)

However, this contribution is cancelled by a term originating from the variation of the matter

flux.

Using (18) in (27), ignoring surface terms in the time honoured way, we arrive at

δ
�
naAa

√
−g

�
=

√
−g

�
2ξanb∇[aAb] + naδAa

�
(29)

The first term enters the Euler equations, essentially redefining the canonical momentum,

and the second leads to the current term in the Maxwell equations. The electromagnetic

contribution to the stress-energy tensor is completely determined by the first term in (2),

leading to (23).

VI. CHARGED FLUID EQUATIONS

Let us now consider the corresponding fluid problem. We assume that the system contains

a number of different charge carriers, and that the flux na
x associated with each component

(labelled by x) is conserved;

∇an
a
x = 0 (30)

5

Finally, we find that the stress-energy tensor takes the form

Tab =

�

x

n
x
aµ̄

x
a + gab

�
Λ−

�

x

n
a
xµ̄

x
c

�
+ T

EM
ab (40)

where we have used (23). We have also defined

µ̄
x
a = µ

x
a +

1

4

�
∂χ

cdef

∂n2
x

�
FcdFefn

x
a (41)

ADD TO GET EQUATIONS OF MOTION!

VII. GORDON’S METRIC

In an isotropic medium, it is generally possible (TRUE?) to find an inertial frame such

that χ
abcd is diagonal, with the first three components being −ε and the rest µ. The two

parameters ε and µ represent the dielectric constant and the magnetic permeability, re-

spectively. If the parameters take the same values at any event, then the material is also

homogeneous.

This means that we have the constitutive relations

D
a
= εE

a
(42)

and

B
a
= µH

a
(43)

This leads to

µH
ab
= F

ab
+ (εµ− 1)

�
u
a
E

b − u
b
E

a
�

=
�
g
ac
g
bd − (εµ− 1)

�
g
bd
u
a
u
c − g

ad
u
b
u
c
��

Fcd

= [g
ac − (εµ− 1) u

a
u
c
]
�
g
bd − (εµ− 1) u

b
u
d
�
Fcd (44)

Given this, we define the “Gordon metric”

γ
ab
= g

ab − (εµ− 1) u
a
u
b

(45)

with inverse

γab = gab +

�
1− 1

εµ

�
uaub (46)

7

action principle for coupled fluids, and an identification of the true momenta, and shows

how easy it is to incorporate electromagnetism into the multi-fluid system [28]. We simply

need to consider multiple charge carriers with identifiable fluxes, na
x, and individual charges,

qx, such that the charge current associated with each flow is

jax = qxn
a
x , (33)

and the total current, that sources the electromagnetic field, is given by the sum

ja =
�

x

jax . (34)

It is worth recalling that the variational derivation in Section IIB requires that the current

is conserved. However, this constraint is automatically satisfied if each individual current

is conserved, as assumed in the variational multi-fluid model. Hence, we simply have to

change the electromagnetic Lagrangian to

LEM = − 1

4µ0
FabF

ab
+ Aa

�

x

jax , (35)

to combine the two models.

It is easy to see that the equations that govern the electromagnetic field remain exactly

as before. However, the coupling to the current leads to modified fluid momenta;

µ̄x
a = µx

a + qxAa , (36)

which satisfy the equations of motion

2na
x∇[aµ̄

x
b] = 0 . (37)

As an alternative, we can write this as an explicit force-balance relation. Moving the elec-

tromagnetic contribution to the right-hand side, we get

fx
a = 2nb

x∇[bµ
x
a] = qxnb

xFab = jbxFab . (38)

To see that this result makes sense, note that the total energy-momentum tensor is easily

obtained as the sum of the two previous expressions;

T ab
= T ab

M + T ab
EM . (39)
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Also find the “electromagnetic” contribution to the stress-energy tensor; 

 

 

Note that the current does not enter this expression. Consider the coupling term; 
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This illustrates the importance of the constraint in the variational principle. 

 

 

 

 

 

 

 

 

where does the current go? 

A key point here is that the current term in (2) does not affect the (total) stress-energy
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do this, let us focus on the contribution to the action from the matter-field coupling;

IC =

�
jaAa

√
−g d4x (25)

For the sake of the argument, let us assume that we are dealing with a single particle species

with charge q per particle (it is easy to see that the result in the general case follows from

the same argument). Then we have

ja = qna
(26)

Variation of the integrand then leads to

δ
�
naAa

√
−g

�
=

√
−g [Aaδn

a
+ naδAa] + naAaδ

√
−g (27)

Naively, the first terms affects the Euler equation, the second leads to the current term in

the Maxwell equations and the final term should enter the stress energy tensor, since

δ
√
−g =

1

2

√
−ggabδgab (28)

However, this contribution is cancelled by a term originating from the variation of the matter

flux.

Using (18) in (27), ignoring surface terms in the time honoured way, we arrive at

δ
�
naAa

√
−g

�
=

√
−g

�
2ξanb∇[aAb] + naδAa

�
(29)

The first term enters the Euler equations, essentially redefining the canonical momentum,

and the second leads to the current term in the Maxwell equations. The electromagnetic

contribution to the stress-energy tensor is completely determined by the first term in (2),

leading to (23).

VI. CHARGED FLUID EQUATIONS

Let us now consider the corresponding fluid problem. We assume that the system contains

a number of different charge carriers, and that the flux na
x associated with each component

(labelled by x) is conserved;

∇an
a
x = 0 (30)
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Finally, a variation with respect to the metric leads to the electromagnetic stress-energy

tensor being given by

TEM
ab =

1

µ0

�
gcdFacFbd −

1

4
gab

�
FcdF

cd
��

. (27)

It is worth noting that this leads to

∇aT
ab
EM = jaF

ab ≡ −f b
L , (28)

which (as we will see later) defines the Lorentz force fa
L .

In principle, the electromagnetic dynamics is now fully specified, as we can solve the

system for the vector potential Aa. However, in most applications it is more intuitive to

work with the electric and magnetic fields Ea and Ba. The down-side to this is that these are

observer dependent quantities. This is obvious since varying electric fields generate magnetic

fields and vice versa, and the induced variation depends on the motion of the observer.

According to an observer moving with four-velocity ua, the Faraday tensor can be ex-

pressed as [58]

Fab = 2u(aEb) + �abcdu
cBd , (29)

(where round brackets indicate symmetrization). This defines the electric and magnetic

fields as

Ea = −ubFba , (30)

and

Ba = −ub

�
1

2
�abcdF

cd

�
. (31)

The physical fields are both orthogonal to ua, so each field has three components, just as

in non-relativistic physics. We also need an expression for the current, and it is natural to

decompose this in a similar way;

ja = σua + Ja , where Jaua = 0 . (32)

C. A comfortable marriage

So far, we have done quite a lot of preparatory work, going over standard territory without

adding any real new insight. Our patience with this exercise is about to pay off, as we will

now be able to make swift progress. This illustrates the advantage of having a well-grounded
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and the charge current takes the form

ja = e (np − ne) (u
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From this result we read off the charge density σ = e (np − ne) in the observer’s frame. If

we assume that the system is charge neutral on macroscopic scales, a natural assertion for

systems where the charge carriers (like the electrons) are highly mobile and one of the key

assumption in standard magnetohydrodynamics, then the current simplifies to

ja = Ja = e
npne

P + ρ
(µp + µe)w

a . (60)

Moreover, in the case of a charge neutral plasma we have P + ρ = ne (µp + µe) which

means that the current takes the final form

Ja = enew
a . (61)

B. The resistivity

In order to account for the resistivity, we need to add a phenomenological “force” term

to (38). This additional term should represent the dissipative interaction between the two

components, and from non-relativistic intuition [11, 12], we expect it to be linear in the

relative velocity between the two components. We also see from (38) that the required force

must be orthogonal to each respective flux (note that this condition must be relaxed if we

want to allow for particle creation/destruction). Based on these points, we let the resistive

forces take the form

f̃a
p = eR ⊥ab

p ne
b = −R ⊥ab

p jb , (62)

and

f̃a
e = eR ⊥ab

e np
b = R ⊥ab

e jb . (63)

These expressions represent linear scattering of the two components. The resistivity expe-

rienced by one component is proportional to the number of particles of the other kind that

flows relative to it.

The resistivity is further constrained by the fact that the sum of the forces must vanish

(essentially Newton’s third law). This follows immediately from the fact that the divergence
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the two components. This means that the model applies to both pair plasmas and proton-

electron systems (indeed, any two-component system with electrons and single charged ions).

A key aim of the exercise we are embarking on is to derive the relativistic version of Ohm’s

law. Basically, we want to start from the charged two-fluid system and arrive at a model

from which the assumptions associated with standard relativistic magnetohydrodynamics

become clear. This discussion will obviously involve both the electric and the magnetic

field, as well as the charge currents. Now, we know that Ea and Ba are observer dependent

quantities. Hence, the model involves a judicious choice of observer. It is natural to begin

by considering this issue.

Given an observer with four velocity ua (normalised such that uaua = −1) we can de-

compose the two fluxes;

na
x = nxu

a
x , where n2

x = −na
xn

x
a and ua

xu
x
a = −1 , (45)

using

ua
x = γx (u

a + vax) , where uavxa = 0 , and γx =
�
1− v2x

�−1/2
. (46)

In the first instance, we will assume that the “drift” velocities vax are small enough that we

can linearise the model, i.e. assume that γx ≈ 1. This model should be relevant for cold

plasmas [60]

We also need the fluid momenta, which would generally involve entrainment between the

two components. However, as we are not aware of a physical argument for the presence

of entrainment between protons and electrons (or, indeed, positrons and electrons), we do

not account for this effect here (although we will consider it when we discuss heat flux and

entropy later). This means that we have

µx
a = Bxnx

a = Bxγxn
x (ua + vxa) . (47)

The chemical potential of each component is generally defined by

µx = −ua
xµ

x
a = nxBx , (48)

which means that,

µx
a = µxγx (ua + vxa) ≈ µx (ua + vxa) . (49)
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With these definitions we can write the (linearised) fluid stress-energy tensor as

TM
ab = Ψgab + (npµp + neµe) uaub + (npµpv

p
b + neµev

e
b) ua + (npµpv

p
a + neµev

e
a) ub . (50)

Contracting this with ua
we get an expression for the momentum flux;

uaTM
ab = (Ψ− npµp − neµe) ub − (npµpv

p
b + neµev

e
b) . (51)

Contracting with ub
again, we find that the energy density measured by the observer is

ρ = uaubTM
ab = −Ψ+ npµp + neµe . (52)

We see that, in the linear model Ψ is the pressure. Hence, we replace it with P in the

following, leading to the anticipated thermodynamic relation (the integrated first law)

P + ρ = npµp + neµe . (53)

Note that, as we are only considering the fluid contribution here, our definitions of P and ρ

do not include electromagnetic effects (i.e. the magnetic pressure is not accounted for yet).

From (51) we see that we can choose observers such that there is no relative (fluid)

momentum flux by setting [61]

npµpv
p
b + neµev

e
b = 0 . (54)

This leads us to define a velocity va such that

(P + ρ) va = npµpv
a
p + neµev

a
e , (55)

and highlights the relevance of the frame in which va = 0. We express the second degree of

freedom in terms of the relative velocity

wa
= vap − vae . (56)

With these definitions we have

vap = va +
neµe

P + ρ
wa , (57)

and

vae = va − npµp

P + ρ
wa , (58)

13

With these definitions we can write the (linearised) fluid stress-energy tensor as

TM
ab = Ψgab + (npµp + neµe) uaub + (npµpv

p
b + neµev

e
b) ua + (npµpv

p
a + neµev

e
a) ub . (50)

Contracting this with ua
we get an expression for the momentum flux;

uaTM
ab = (Ψ− npµp − neµe) ub − (npµpv

p
b + neµev

e
b) . (51)

Contracting with ub
again, we find that the energy density measured by the observer is

ρ = uaubTM
ab = −Ψ+ npµp + neµe . (52)

We see that, in the linear model Ψ is the pressure. Hence, we replace it with P in the

following, leading to the anticipated thermodynamic relation (the integrated first law)

P + ρ = npµp + neµe . (53)

Note that, as we are only considering the fluid contribution here, our definitions of P and ρ

do not include electromagnetic effects (i.e. the magnetic pressure is not accounted for yet).

From (51) we see that we can choose observers such that there is no relative (fluid)

momentum flux by setting [61]

npµpv
p
b + neµev

e
b = 0 . (54)

This leads us to define a velocity va such that

(P + ρ) va = npµpv
a
p + neµev

a
e , (55)

and highlights the relevance of the frame in which va = 0. We express the second degree of

freedom in terms of the relative velocity

wa
= vap − vae . (56)

With these definitions we have

vap = va +
neµe

P + ρ
wa , (57)

and

vae = va − npµp

P + ρ
wa , (58)

13

and the charge current takes the form

ja = e (np − ne) (u
a + va) + e

npne

P + ρ
(µp + µe)w

a . (59)

From this result we read off the charge density σ = e (np − ne) in the observer’s frame. If

we assume that the system is charge neutral on macroscopic scales, a natural assertion for

systems where the charge carriers (like the electrons) are highly mobile and one of the key

assumption in standard magnetohydrodynamics, then the current simplifies to

ja = Ja = e
npne

P + ρ
(µp + µe)w

a . (60)

Moreover, in the case of a charge neutral plasma we have P + ρ = ne (µp + µe) which

means that the current takes the final form

Ja = enew
a . (61)

B. The resistivity

In order to account for the resistivity, we need to add a phenomenological “force” term

to (38). This additional term should represent the dissipative interaction between the two

components, and from non-relativistic intuition [11, 12], we expect it to be linear in the

relative velocity between the two components. We also see from (38) that the required force

must be orthogonal to each respective flux (note that this condition must be relaxed if we

want to allow for particle creation/destruction). Based on these points, we let the resistive

forces take the form

f̃a
p = eR ⊥ab

p ne
b = −R ⊥ab

p jb , (62)

and

f̃a
e = eR ⊥ab

e np
b = R ⊥ab

e jb . (63)

These expressions represent linear scattering of the two components. The resistivity expe-

rienced by one component is proportional to the number of particles of the other kind that

flows relative to it.

The resistivity is further constrained by the fact that the sum of the forces must vanish

(essentially Newton’s third law). This follows immediately from the fact that the divergence
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Need charge neutral system in order to retain energy conservation. 

This is as expected. In general, the resistivity will generate heat, 
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heat flux (as well as the second law etcetera). 
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of the non-dissipative stress-energy tensor [which arises from the sum of (38)] must vanish.

With the suggested forces, we have

f̃a
p + f̃a

e = eR
�
⊥ab

p ne
b+ ⊥ab

e np
b

�
≈ eR (np − ne)w

a . (64)

This shows that the linearized model is only consistent as long as the system is charge

neutral. If there is charge imbalance, we need to alter the model. At first sight, this

may seem surprising but it is actually quite natural. The model only accounts for the two

charged components, whereas the general system would also have the heat generated by the

dissipation. The correct interpretation of (64) is that, for a charge neutral system, there is

no heat generated at the linear level. In order to consider a more general system, we need

to account for the heat. Then the force balance is ensured by introducing an additional

component, which we will take to be the entropy, with a corresponding force of the required

form. We will discuss this extended system in the next section. For now, we simply assume

charge neutrality and note that the corresponding low-velocity model describes a “cold

plasma” in the sense that there is no heat generated in the system.

C. Generalized Ohm’s law

The problem under consideration has two fluid degrees of freedom, represented by (38)

with the added resistivity terms (on the right-hand side). One can (obviously) combine

these two equations in different ways. It seems natural to adapt the standard strategy from

non-relativistic plasma physics [11, 12] and consider a “total momentum” equation alongside

a suitably weighted difference. The first of these equations follows by adding (38), and from

the discussion in the previous section we know that this leads to

∇aT
ab
= 0 , (65)

as the sum of the resistive forces vanishes (to linear order). In order to represent the

second degree of freedom, we divide the two equations from (38) by nxµx and then take

the difference. The weighting (different from that used in other recent discussions of the

problem [15]) is motivated by the Newtonian limit, where µx → mx (the rest mass) and

corresponds to the ”centre-of-mass” frame. With this weighting the difference equation

simplifies considerably. One may obtain the same final result with a different weighting, but
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Working out the (suitably!) weighted difference between the two momentum 
equations we arrive at the relativistic form for Ohm’s law. 

The general result is quite complicated, but there are two instructive examples. 

Ohm’s law 

For pair plasmas we have 

 

 

while proton-electron plasmas are described by 

 

 

 

 

The absence/presence of i) the Hall term and ii) the battery term is notable.   

Various approximations follow by neglecting terms in these expressions. Ideal 
MHD is the most “extreme” – more an assumption than an approximation! 

The final relation for pair plasmas can now be written [65]

Eb −
R
ene

Jb =
µ

2e2ne

�
⊥ab J̇

a + Ja

�
σab + ωab +

4

3
θ ⊥ab

��
, (85)

where the dot represents the comoving time derivative uc∇c. As already mentioned, this

expression is notable for the absence of the Hall effect, i.e. there is no term proportional to

�abcJ bBc.

The case of a proton-electron plasma is only slightly more complicated. After neglecting

µe compared to µp, we end up with

Eb−
1

ene
�bcdJ

cBd− R
ene

Jb =
µe

e2ne

�
⊥ab J̇

a + Ja

�
σab + ωab +

4

3
θ ⊥ab

��
− 1

e
⊥a

b ∇aµe . (86)

In this case, the Hall term is obviously present. We also have a “Biermann battery” term,

⊥a
b ∇aµe, which would serve to generate a magnetic field even if there was no field initially

[15].

It is easy to show that our final results agree perfectly with the results obtained in [15].
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remarks 
The variational multi-fluid framework is easily 
extended to charged components, and the 
coupling to electromagnetism is 
straightforward.  

Provides as conceptually clear derivation of 
resistive relativistic magnetohydrodynamics.  

 

 

 

 

 

Also need to develop the formalism further; 

-  the presence of a “neutral” component  

-  more general dissipation channels 

-  superconductivity 

 

 

 

 

 

 

The model can be 
extended to account also 
for thermal effects 
(entropy) and may be 
applied to a range of 
relevant astrophysics 
problems. 


