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context

Relativistic fluid dynamics can be applied to a
range of problems in astrophysics and high-

energy physics. MagnetoSphere

force freefeletilirodynamics
General Relativity is key to problems where
the influence of gravity cannot be ignored;

— black holes
— neutron stars
— cosmology

Covariant variational frame
conceptually elegant descripti
understanding of complex systems:

Electromagnetism is easily incorporated in the -
formalism.

A number of interesting problems requires
resistivity.




variational approach

Maxwell’s equations can be obtained by varying the action
Iem = / Lemv—yg d'z
where the Lagrangian is (for a “passive” medium)

1
LEM — _—FabFab —|_jaAa
4110

where j?is the (conserved) charge current, and the (anti-symmetric) Faraday
tensor given by;

Fab — v611417 — vbAa
The variation is taken with respect to the vector potential A,.

Note: The physical fields depend on the observer.

Question: How do you couple the electromagnetic field to a charged fluid?



convective variations

Make use of the convective variational approach developed by Carter and
collaborators. Consider a single (uncharged) fluid as an example. Then we have
the action;

Iy = /A\/—g d*z

where A=A(n) and the conjugate
momentum ¢ , is determined by the
variation

XI

1
0N = p,on® + §na,ub5gab

The variation is constrained by
focussing on displacements & ¢ that
keeps the flux n? conserved. This leads

to

1
Snt = nbefa . fbena _na (vbgb 4+ 5gbca‘gbc>

Rearrange the variation and neglect “surface terms” to arrive at the final result.



1
0 (AV=g) =+v/—g [%“nbv[aub] +5 (Tg® + nu’) 5gab]

anv[a py) =0

NS

Tab _ \I,gab+naub
U=A-—nu,

When the Euler equation is satisfied then it is automatically true that the
divergence of the stress-energy tensor vanishes.



a comfortable marriage

It is (relatively) straightforward to extend the constrained variation to charged
fluids.

Let us consider the general case with a number of (conserved) fluxes carrying
charges. Then we have

Vang =0

and the variational approach leads to
20 Viafiy = 2jxVipAa) = Jx Fra

where
oy =ty + q Ag

and the stress-energy tensor is

ab — Z na:ua T Gab < Z nx“c) EM



where does the current go?

Also find the “electromagnetic” contribution to the stress-energy tensor;

1 1
Tolbjl))M - IQCdFachd — ~Yab (chFCd>
Ho 4

Note that the current does not enter this expression. Consider the coupling term;
Ic = / 4 Ag/—g d*x
leading to

5 (n*Aav/=g) = V=g [Aadn® + n"6 Ag] + n" Aaby/—g

=—g (2§“nbv[aAb] + na5Aa)

This illustrates the importance of the constraint in the variational principle.



fibration

Consider a two-fluid systems (p and e), with each kind of particle carrying a
single unit of charge. Decompose each flux using

ul = vy (u* 4+ v2) uvr =0 Vx = (1 — U>2<>_1/2

then define v? and w?, such that

(P =+ p) v = nppipty + Nefley

a__ ,a _ ..a
W = v, — Vg
This means that the current can be decomposed as

Te

P (Mp + Ne) w*

ja:e(fnp—ne)(u‘urva)Jre;pJr

Choose observer such that v2=0, and work only to linear order in w to simplify
the problem. (Relativistic analogue of centre-of-mass frame.) Then,;

J = en.w"



resistivity
Add (phenomenological) resistivity, representing linear scattering;
fg =eR J_gb ny, = —R Lgb Jb
fé=eR L& ny =R LY j,
Note: At linear level we have

fg +fr=¢eR (L2 np+ L% nb) =~ eR (n, — ne) w*

Need charge neutral system in order to retain energy conservation.

This is as expected. In general, the resistivity will generate heat,
which is not accounted for in the two-component model. To do this,
we need to add an entropy component and consider the associated
heat flux (as well as the second law etcetera).



Ohm’s law

Working out the (suitably!) weighted difference between the two momentum
equations we arrive at the relativistic form for Ohm’s law.

The general result is quite complicated, but there are two instructive examples.

For pair plasmas we have

R
J, = M

eNe 2e2n,

by —

. 4
[J—ab Ja + Ja (Uab + Wab + 5(9 J—ab)]

while proton-electron plasmas are described by

1 R

Eb— —EbchCBd— —Jb
eTle ene
He ra a 4 1 a
— J—ab JU 4+ J Oap + Wap + =0 J—ab —— 1 b Va,ue
€21, 3 e

The absence/presence of i) the Hall term and ii) the battery term is notable.

Various approximations follow by neglecting terms in these expressions. Ideal
MHD is the most “extreme” — more an assumption than an approximation!



The variational multi-fluid framework is easily
extended to charged components, and the
coupling to electromagnetism is
straightforward.

Provides as conceptually clear derivation of
resistive relativistic magnetohydrodynamics.

The model can be
extended to account also
for thermal effects
(entropy) and may be
applied to a range of
relevant astrophysics
problems.

Also need to develop the formalism fur
- the presence of a “neutral” component
— more general dissipation channels

— superconductivity

remarks




