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The Euler’s problem

• The gravitational field of two fixed point-masses (∼ 1760):

V = −
Gm1

r1
−

Gm2

r2

= −
Gm1

|r− aẑ|
−

Gm2

|r + aẑ|

• Better analyzed in spheroidal coordinates:

ξ =
r1 + r2
2a

, η =
r1 − r2
2a
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1st similarity

• This Newtonian problem is integrable, just like Kerr. That is, there are as many
integrals of motion as the number of dimensions.

E , Lz , b

• Integrability renders the (geodesic)motion directly solvable through theHamilton-
Jacobi method.
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2nd similarity

• The gravitational field of a Kerr b.h. is oblate, while Euler’s potential is prolate.
By replacing a → ia, Euler’s problem becomes oblate as well.

V =
M√
2R2

√
R2 + r2 − a2 = −

Mξ

a(ξ2 + η2)
,

where R2 =
√
(r2 − a2)2 + (2ar · ẑ)2.

• As in Kerr, closed orbits precess around the equatorial plane, due to its non-
vanishing quadrupole moment. No frame dragging in the oblate version of
Euler’s problem though.
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3rd similarity

• The Carter constant for the Kerr metric is (µtest body = 1)

Q = u2θ + cos2 θ
[
a2(1− E2) + L2

z/ sin
2 θ

]

• The 3rd integral of motion in the Euler problem is

b = −Q− L2
z − 2a2EN

if we make the following (rational) replacements

a → ia , η → cos θ , p2η(1− η2) → p2θ , E
2 → 1 + 2EN

Thus the physical meaning of the new integral of motion is similar.
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4th similarity (in collaboration with K. Chatziioannou)

• The innermost stable circular orbit (ISCO) as a function of a is
rISCO
M

= 3 + Z2 ∓
√
(3− Z1)(3 + Z1 + 2Z2)

Z1 = 1 +
3
√
1− a⋆2

(
3
√
1− a⋆ +

3
√
1 + a⋆

)
, Z2 =

√
3a⋆2 + Z2

1 , a⋆ = a/M.
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• For the (the oblate version of the) Euler problem there is also an ISCO

ξISCO
a

=
√
3.
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5th similarity (in collaboration with K. Chatziioannou)

• The invariant frequencies related to circular orbits, perihelion precession, and
azimuthal precession in Kerr are the ones that could be directly measured
(through e.g. gravitational waves).

• Since the Euler problem is integrable as well, one can calculate the correspond-
ing frequencies. Although the frequencies are not expressed by the same func-
tions they share common qualitative characteristics: [(i) ωr/ωθ → 1 for r →
∞, (ii) the resonance condition ωr/ωθ = 2 is never met, (iii) for a range
of parameters (a, ι =orbital inclination) the ratio of frequencies have similar
orbital-semilatus-rectum-dependence.]
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...consequence of no resonance (in collaboration with K. Chatziioannou)

• The non-resonant condition ωr/ωθ ̸= 2n ensures that an initial circular (r =

const) orbit will evolve adiabatically to a circular one, due to radiation reaction
in Kerr (Ori, Kenefick (1995)). Exactly the same non-resonant condition in
Euler problem ensures adiabatic “circularity” of orbits. Actually theNewtonian
case is easier to explore and understand in a deeper way the arguments of Ori
and Kenefick.
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6th similarity ( Will (2010) )

• The relativistic (Geroch-Hansen) multipole moments of Kerr are

M2k = M(−a2)k , S2k+1 = Ma(−a2)k

• Will showed that in Newtonian gravity the only axially symmetric, and with
reflection symmetry potential that posesses a Carter-like constant is the Euler
potential which has exactly the same spectrum of mass moments:

M2k = M(a2)k (prolate)
M2k = M(−a2)k (oblate)
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7th similarity (in collaboration with K. Glampedakis)

• Kerr metric provides a separable set of differential equations when analysing
the propagation of perturbations in the corresponding background.

• Looking for a Newtonian axially-symmetric potential that renders the wave-
equation

∇2Ψ + (ω2/c2 − κV )Ψ = 0

separable, one obtains two such solutions:

i. Working with spherical coordinates: the monopole solution.

ii. Working with spheroidal coordinates: the Euler problem.

• Moreover forκ = 4ω2 the corresponding pair of azimuthal and radial differen-
tial equations are (1) identical with respect to the azimuthal o.d.e. and (2) extre-
mely similar with respect to the radial part, compared with the corresponding
Kerr equations.
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8th similarity (in collaboration with G. Pappas)

• A Poincaré section (a stroboscopic picture of the phase space) of orbits in Kerr
is a regular pattern of closed curves nested within each other (integrability).

• The same pattern of very similar series of nested closed curves arises in the
Euler problem due to its integrable nature.
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• When a Kerr metric is perturbed (slightly non-integrable), the tori of regular
orbits slightly deform, but they still exist. The tori that correspond to resonances
(ωr/ωθ = p/q (rational)) disintegrate and a Birkhoff chain of islands form in
the Poincaré section instead of a single curve.

• Exactly the same picture formswhen analysing a perturbed Euler problem (e.g.
by putting a small mass at the origin).



Gaining insight from the Newtonian problem (in collaboration
with G. Pappas)

• The analysis of resonances in the slightly non-Kerrmetric offers an opportunity
to look for non-Kerr (alternative gravity theories) objects through gravitational
wave analysis.

• When the orbit evolves through a resonance there are qualitative new features
that show up (ratios of precessing frequencies remain fixed). However, quanti-
tatively analysing such a problem in the framework of relativity is not an easy
task (self-force is not known).

• The slightly perturbed Euler problem is an excellent paradigm to study such
characteristics.We have tried evolving orbits in the perturbed Euler problem by
implementing a phenomelogical friction that mimics the effect of gravitational
radiation

FGR ∝ −FG

(
u

c

)4 u
c
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Gaining insight ... (in collaboration with G. Pappas)

• Using a self-force in theNewtonian problemwe could check if our understanding
of evolving an orbit near a resonance, that is based in average energy and
angular-momentum losses, is right or not.

• First numerical results suggests that the self-force description leads to a much
longer time to cross a resonance, compared to what one gets by assuming a
constant average loss:
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