Stability and Instability of Extremal Black Holes

Stefanos Aretakis

Cambridge/Princeton/IAS

June 22, 2012 Recent Developments in Gravity, Chania, Crete

Introduction

• Einstein's general relativity theory: The study of (4-dimensional) Lorentzian manifolds (\mathcal{M}, g) which satisfy the Einstein equations:

$$Ric - \frac{1}{2}g \cdot R_{sc} = \mathbf{T}.$$

• Black holes are one of most celebrated predictions of the theory, namely the existence of spacetimes for which we have a well-defined complete infinity \mathcal{I} where radiation escapes and such that

$$\mathcal{M} - J^-(\mathcal{I}) \neq \emptyset.$$

Then, $\mathcal{M} - J^{-}(\mathcal{I})$ is the black hole region, $J^{-}(\mathcal{I})$ is the domain of outer communications and $\partial J^{-}(\mathcal{I})$ is the event horizon (denoted by \mathcal{H}).

• Under appropriate causality conditions (e.g. global hyperbolicity), the event horizon \mathcal{H} is a *null hypersurface*, \mathcal{H} being the boundary of the past of a set.

Null Hypersurfaces and the Surface Gravity κ

- Null hypersurface $H \subset \mathcal{M}$: $\forall p \in H$ the tangent plane $T_pH = \langle V \rangle^{\perp}$ and V is null (hence T_pH is degenerate). Then, $X \in T_pH$ is null if $X \in \langle V \rangle$ and spacelike otherwise.
- $g(\nabla_V V, X) = -g(V, \nabla_V X) = -g(V, \nabla_X V) g(V, [V, X]) = -\frac{1}{2}X(g(V, V)) = 0$, hence

$$\nabla_V V = \kappa V$$

and so the integral curves γ of V are geodesics (κ : surface gravity).

- Killing horizon H: V Killing and so κ is constant along γ .
- Z.L.o.B.H.M.: If (\mathcal{M}, g) satisfies Ric(g) = 0 (and V is Killing) then κ is globally constant on H.
- Extremal horizon: Killing horizon with $\kappa = 0$ (subextremal: $\kappa > 0$). Null generators are affinely parametrized. No bifurcate sphere.

The Main Examples

- Extremal Kerr
- Extremal Reissner-Nordström
- Majumda–Papapetrou multi black holes

Importance of Extremal Black Holes/Known Results

- Classical Physics: No redshift effect along the event horizon \mathcal{H} .
- Quantum Physics: Zero temperature and hence extremal black holes do not radiate.
- Geometry/Analysis:
 - If $\underline{\chi}$ is the transversal second fundamental form of the sections of a vacuum extremal horizon \mathcal{H} , then $\mathcal{L}_V \chi = 0$.
 - **(**) For extremal vacuum horizons the torsion η satisfies an elliptic system.
 - No static vacuum extremal horizons with spherical topology (Chruściel, Reall, Tod).
 - Rigidity of geometry of (electro-)vacuum axisymmetric extremal horizons:
 g, η, ρ, σ are fully determined (after fixing a gauge) (Hájíček, Lewandowski and Pawlowski, Kunduri and Lucietti).
 - Static electrovacuum spacetime with many black holes ⇒ all black holes are extremal (Chruściel, Tod). Example: Majumdar–Papapetrou.

The Wave Equation

• We initiate the study of the wave equation

$$\Box_g \psi = 0$$

in the exterior region of extremal black holes up to and including the event horizon.

- No previous (mathematical, numerical or heuristic) results known for asymptotics of waves along extremal horizons.
- We start by considering extremal Reissner-Nordström backgrounds.

New features of Extremal Horizons

- There exists a conservation law along the event horizon for the spherical mean.
- This law had not been previously observed.
- For the case of extremal Reissner–Nordström, the proof of this law is relatively simple and so we will present essentially all the details.
- We first introduce a frame that will be very useful for our analysis.

Local Geometry of Extremal Reissner-Nordström

The *T*-propagated frame (T, Y, E_1, E_2) : (If *r* is the radius of the spheres of symmetry, then $Y = \partial_r$.)

A Conservation Law for Extremal Reissner–Nordström

Let M>0 denote the mass. Then $\mathcal{H}=\{r=M\}.$ If we write the wave equation using the (T,Y,E_1,E_2) frame we obtain

$$D \cdot (YY\psi) + 2(TY\psi) + \frac{2}{r} \cdot (T\psi) + \left(D' + \frac{2D}{r}\right) \cdot (Y\psi) + \not \Delta \psi = 0,$$

where

$$D = g(T,T) = \left(1 - \frac{M}{r}\right)^2$$

Assume $\Delta \psi = 0$. Then, since D = D' = 0 on the horizon \mathcal{H} , we have

$$T\left(Y\psi + \frac{1}{M}\psi\right) = 0$$

and since T is tangential to \mathcal{H} , the quantity

$$H[\psi] = Y\psi + \frac{1}{M}\psi$$

is conserved along the event horizon ${\mathcal H}$ for all spherically symmetric solutions $\psi.$

Generalisations?

• What about, for example, extremal Kerr or Majumdar–Papapetrou spacetime?

Generalised Conservation Law

Theorem (S.A.)

Let (\mathcal{M}, g) be a 4-dimensional Lorentzian manifold containing an extremal axisymmetric horizon \mathcal{H} .

Let also V denote the Killing field null and normal to \mathcal{H} and Φ denote the axial Killing Φ tangential to \mathcal{H} and such that $[V, \Phi] = 0$. If the distribution of the planes orthogonal to the planes spanned by V and Φ is integrable, then we have a conservation law on the horizon \mathcal{H} .

Applications

- The conservation law holds for the spherical mean of an expression of ψ and first order derivatives of $\psi.$
- Theorem holds for extremal Kerr. Explicitly, the quantity

$$H^{\mathsf{Kerr}}[\psi](\tau) = \int_{S_{\tau}} \left(M \sin^2 \theta \left(T\psi \right) + 4M \left(Y\psi \right) + 2\psi \right)$$

is conserved along the event horizon \mathcal{H} .

• Theorem holds for Majumdar-Papapetrou multi black holes.

Initial Value Problem

- The conservation laws are completely determined by the local properties of extremal horizons (namely, by the induced metric \oint and the Christoffel symbols Γ on \mathcal{H}) and hence do not depend on global aspects of the spacetime.
- Hence we have not discussed global hyperbolicity or well-posedeness of the wave equation or other properties (behaviour of the geodesic flow etc.).
- Initial value problem for extremal Reissner–Nordström and extremal Kerr.

Instability Results

Theorem (S.A.)

For generic solutions ψ to the wave equation on extremal

Reissner-Nordström or extremal Kerr backgrounds we have:

Non-Decay:

The translation-invariant transversal to \mathcal{H} derivative $Y\psi$ does not decay along \mathcal{H} .

Pointwise Blow-up:

$$Y^k\psi\big|\to+\infty,$$

along \mathcal{H} as advanced time tends to infinity $k \geq 2$. Energy Blow-up:

$$\left\|Y^k\psi\right\|_{L^2(R_\tau)}\to+\infty$$

as $\tau \to +\infty$ for all $k \ge 2$.

This result is in stark contrast with the subextremal case.

Stability Results

Theorem (S.A.)

For all solutions ψ (with sufficiently regular initial data on Σ_0) to the wave equation on extremal Reissner–Nordström and all axisymmetric solutions on extremal Kerr we have

Pointwise Decay: $|\psi(\tau, \cdot)| \to 0$

as $\tau \to +\infty$ up to and including the event horizon \mathcal{H} .

THANK YOU!