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Introduction

Einstein’s general relativity theory : The study of (4-dimensional)
Lorentzian manifolds (M, g) which satisfy the Einstein equations:

Ric− 1

2
g ·Rsc = T.

Black holes are one of most celebrated predictions of the theory,
namely the existence of spacetimes for which we have a well-defined
complete infinity I where radiation escapes and such that

M− J−(I) 6= ∅.

Then, M− J−(I) is the black hole region, J−(I) is the domain of
outer communications and ∂J−(I) is the event horizon (denoted by
H).

Under appropriate causality conditions (e.g. global hyperbolicity), the
event horizon H is a null hypersurface, H being the boundary of the
past of a set.
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Null Hypersurfaces and the Surface Gravity κ

Null hypersurface H ⊂M: ∀p ∈ H the tangent plane TpH = 〈V 〉⊥
and V is null (hence TpH is degenerate). Then, X ∈ TpH is null if
X ∈ 〈V 〉 and spacelike otherwise.
g(∇V V,X) = −g(V,∇VX) = −g(V,∇XV ) − g(V, [V,X]) = − 1

2X
(
g(V, V )

)
= 0,

hence
∇V V = κV

and so the integral curves γ of V are geodesics (κ: surface gravity).

Killing horizon H: V Killing and so κ is constant along γ.
Z.L.o.B.H.M.: If (M, g) satisfies Ric(g) = 0 (and V is Killing) then
κ is globally constant on H.
Extremal horizon: Killing horizon with κ = 0 (subextremal: κ > 0).
Null generators are affinely parametrized. No bifurcate sphere.
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The Main Examples

Extremal Kerr

Extremal Reissner–Nordström

Majumda–Papapetrou multi black holes
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Importance of Extremal Black Holes/Known Results

Classical Physics: No redshift effect along the event horizon H.

Quantum Physics: Zero temperature and hence extremal black holes
do not radiate.

Geometry/Analysis:
If χ is the transversal second fundamental form of the sections of a
vacuum extremal horizon H, then LV χ = 0.

1 For extremal vacuum horizons the torsion η satisfies an elliptic system.
2 No static vacuum extremal horizons with spherical topology (Chruściel,

Reall, Tod).
3 Rigidity of geometry of (electro-)vacuum axisymmetric extremal hori-

zons: g/ , η, ρ, σ are fully determined (after fixing a gauge) (Háj́ıc̆ek,
Lewandowski and Pawlowski, Kunduri and Lucietti).

Static electrovacuum spacetime with many black holes ⇒ all black
holes are extremal (Chruściel, Tod). Example: Majumdar–Papapetrou.
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The Wave Equation

We initiate the study of the wave equation

�gψ = 0

in the exterior region of extremal black holes up to and including the
event horizon.

No previous (mathematical, numerical or heuristic) results known for
asymptotics of waves along extremal horizons.

We start by considering extremal Reissner–Nordström backgrounds.
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New features of Extremal Horizons

There exists a conservation law along the event horizon for the
spherical mean.

This law had not been previously observed.

For the case of extremal Reissner–Nordström, the proof of this law is
relatively simple and so we will present essentially all the details.

We first introduce a frame that will be very useful for our analysis.
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Local Geometry of Extremal Reissner–Nordström

The T -propagated frame (T, Y,E1, E2):
(If r is the radius of the spheres of symmetry, then Y = ∂r.)
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A Conservation Law for Extremal Reissner–Nordström

Let M > 0 denote the mass. Then H = {r = M}. If we write the wave
equation using the (T, Y,E1, E2) frame we obtain

D · (Y Y ψ) + 2(TY ψ) +
2

r
· (Tψ) +

(
D′ +

2D

r

)
· (Y ψ) +4/ψ = 0,

where

D = g(T, T ) =

(
1− M

r

)2

.

Assume 4/ψ = 0. Then, since D = D′ = 0 on the horizon H, we have

T
(
Y ψ +

1

M
ψ
)

= 0

and since T is tangential to H, the quantity

H[ψ] = Y ψ +
1

M
ψ

is conserved along the event horizon H for all spherically symmetric solu-
tions ψ.
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Generalisations?

What about, for example, extremal Kerr or Majumdar–Papapetrou
spacetime?
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Generalised Conservation Law

Theorem (S.A.)

Let (M, g) be a 4-dimensional Lorentzian manifold containing an extremal
axisymmetric horizon H.
Let also V denote the Killing field null and normal to H and Φ denote the
axial Killing Φ tangential to H and such that [V,Φ] = 0. If the distribution
of the planes orthogonal to the planes spanned by V and Φ is integrable,
then we have a conservation law on the horizon H.
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Applications

The conservation law holds for the spherical mean of an expression of
ψ and first order derivatives of ψ.

Theorem holds for extremal Kerr. Explicitly, the quantity

HKerr[ψ](τ) =

∫
Sτ

(
M sin2 θ (Tψ) + 4M (Y ψ) + 2ψ

)
is conserved along the event horizon H.

Theorem holds for Majumdar–Papapetrou multi black holes.
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Initial Value Problem

The conservation laws are completely determined by the local prop-
erties of extremal horizons (namely, by the induced metric g/ and the
Christoffel symbols Γ on H) and hence do not depend on global as-
pects of the spacetime.
Hence we have not discussed global hyperbolicity or well-posedeness
of the wave equation or other properties (behaviour of the geodesic
flow etc.).
Initial value problem for extremal Reissner–Nordström and extremal
Kerr.



Introduction The Wave Equation Conservation Laws The Main Results

Instability Results

Theorem (S.A.)

For generic solutions ψ to the wave equation on extremal
Reissner–Nordström or extremal Kerr backgrounds we have:
Non-Decay:

The translation-invariant transversal to H derivative Y ψ does not decay
along H.
Pointwise Blow-up: ∣∣Y kψ

∣∣→ +∞,

along H as advanced time tends to infinity k ≥ 2.
Energy Blow-up:

∥∥Y kψ
∥∥
L2(Rτ )

→ +∞

as τ → +∞ for all k ≥ 2.

This result is in stark contrast with the subextremal case.
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Stability Results

Theorem (S.A.)

For all solutions ψ (with sufficiently regular initial data on Σ0) to the
wave equation on extremal Reissner–Nordström and all axisymmetric
solutions on extremal Kerr we have

Pointwise Decay: |ψ(τ, ·)| → 0

as τ → +∞ up to and including the event horizon H.
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THANK YOU!
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