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after switching to the tortoise coordinate (14) and introduc-
ing! ¼ ðr2 þ a2Þ1=2R the radial Eq. (12) takes the form of
the Schrödinger equation
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with the potential
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We include the ð&!2Þ term in the definition of the poten-
tial, because even if wewere to separate it, there would be a
residual dependence on!. We present the qualitative shape
of the potential V for a typical choice of parameters in
Fig. 7. One can clearly see the potential well where the
bound Keplerian orbits are localized and a barrier separat-
ing this region from the near-horizon region where super-
radiant amplification takes place.

Consequently, the axion wave function at the horizon
r ¼ rþ (corresponding to r% ¼ &1) is suppressed relative
to the wave function in the vicinity of the Keplerian orbit
by a tunneling exponent,

jRðrþÞj ’ jRðrcÞje&I;

where the tunneling integral I is
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with r1;2 being the boundaries of the classically forbidden
region. We will only follow the leading exponential depen-
dence on e&I and do not aim at calculating the normaliza-
tion prefactor in front of the exponent.

To relate the tunneling exponent with the rate of super-
radiance instability let us consider again the energy flow
Eq. (6). Integrating it over the horizon we obtain

dE
dt

¼ !ðmwþ &!Þ
Z
horizon

jYð"ÞRðrþÞj2; (23)

where E is the energy in the axion cloud. The energy is
maximum in the Keplerian region, so that in the limit
where we only keep track of the dependence on the ex-
ponent e&I we can write

E / jRðrcÞj2 ’ e2IjRðrþÞj2;
and, consequently, to rewrite (23) as

dE
dt

¼ const ' ðmwþ &!Þe&2IE: (24)

In other words, the WKB approximation for the super-
radiance rate gives1

# ¼ #ðmwþ &!Þe&2I; (25)

where the normalization prefactor is determined mainly by
the spread of the wave function in the classically allowed
region. We will limit ourself by calculating the exponential
part #. We leave the technical details for the Appendix, and
present only the final result here. Namely, the final answer
for the tunneling integral in the extremal Kerr geometry
takes the form
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which translates in the following superradiant rate,
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where we took the large % limit in (26) and chose the
prefactor to match the low % results of Sec. II B (this value
also agrees with that of [19,32]). As we already said, the
exponent in (27) is larger than that in [19] by a factor of two.
As explained in the Appendix, the rate (27) provides an
upper envelope for superradiance rates at different l in the
large % limit. We have presented (27) by a dotted line in
Fig. 5; it agrees reasonably well with the previous%=l ) 1
results.

III. DYNAMICS OF SUPERRADIANCE

Let us turn now to discussing the dynamical consequen-
ces of the superradiant instability. One important property
of the rates calculated in Sec. II is that the time scale for the
development of the instability is quite slow compared to
the natural dynamical scale rg close to the black hole
horizon, #&1

sr > 107rg. Consequently, in many cases non-
linear effects, both gravitational, and due to axion self-
interactions, become important in the regime where the
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FIG. 7 (color online). The shape of the radial Schroedinger
potential for the eigenvalue problem in the rotating black hole
background. Superradiant modes are localized in a potential well
region created by the mass ‘‘mirror’’ from the spatial infinity on
the right, and by the centrifugal barrier from the ergo-region and
horizon on the left. 1Note, that at this stage we still agree with [19].
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Wave	  scaHering	  in	  rotaEng	  black	  holes	  

Quasinormal	  modes:	  	  
q  Ingoing	  waves	  at	  the	  horizon,	  

outgoing	  waves	  at	  infinity	  
q Discrete	  spectrum	  of	  damped	  

exponen.als	  (“ringdown”)	  
[EB++,	  0905.2975]	  

Massive	  scalar	  field:	  	  
q Superradiance:	  black	  hole	  bomb	  

when	  0	  <	  ω <	  mΩH	  
q Hydrogen-‐like,	  	  

unstable	  bound	  states	  	  
[Detweiler,	  Zouros+Eardley…]	  

[Arvanitaki+Dubovsky,	  1004.3558]	  



f	  =	  1.2	  x	  10-‐2	  (106Msun)/M	  Hz	  
τ =	  55	  M/(106Msun)	  s	  

q  In	  GR,	  each	  mode	  determined	  	  
uniquely	  by	  mass	  and	  spin	  

q One	  mode:	  (M,a)	  
Any	  other	  mode	  frequency:	  
No-‐hair	  theorem	  test	  
	  

q Rela.ve	  mode	  amplitudes:	  
pre-‐merger	  parameters	  
[Kamaretsos++,Gossan++]	  

q Feasibility	  depends	  on	  SNR:	  
Need	  SNR>30	  [EB++,	  2005/07]	  
	  1)	  Noise	  S(fQNM)	  
	  2)	  Signal	  h∼E1/2,	  E=εrdM	  
	   	  εrd∼0.01(4η)2	  for	  comparable-‐mass	  mergers,	  η=m1m2/(m1+m2)2	  

Quasinormal	  modes	  
[Visualiza.on:	  NASA	  Goddard]	  



(e)LISA	  vs.	  LIGO	  

[Schutz]	  

SNR=h/S:	  S	  comparable,	  h∼ηM1/2	  

f	  =	  1.2	  x	  10-‐2	  (106Msun)/M	  Hz	  
τ	  =	  55	  M/(106Msun)	  s	  



q LISA/eLISA	  studies:	  
merger-‐tree	  models	  of	  	  
SMBH	  forma.on	  	  

q Light	  or	  heavy	  seeds?	  
Coherent	  or	  chao.c	  accre.on?	  
[Arun++,	  0811.1011]	  

q eLISA	  can	  easily	  tell	  whether	  
seeds	  are	  light	  or	  heavy	  
[Sesana++,	  1011.5893]	  

q Mergers:	  a∼0.7	  
Chao.c	  accre.on:	  a∼0	  
Coherent	  accre.on:	  a∼1	  
[EB+Volonteri,	  0802.0025]	  

q >10	  binaries	  can	  be	  used	  for	  no-‐hair	  tests	  
q Spin	  observaEons	  constrain	  SMBH	  formaEon	  

Ringdown	  as	  a	  probe	  of	  SMBH	  formaEon	  

[Sesana++,	  2012]	  



Part	  2:	  extending	  GR.	  Why	  massive	  scalar	  fields?	  

1)	  Phenomenology	  

q  Modern	  equivalent	  of	  planets	  [Bertschinger]	  
q  Well-‐posed,	  flexible	  (Damour	  &	  Esposito-‐Farése	  “spontaneous	  scalariza.on”)	  
q  f(R)	  and	  other	  theories	  equivalent	  to	  scalar-‐tensor	  theories	  
	  

2)	  High-‐energy	  physics	  

q  Standard	  Model	  extensions	  predict	  massive	  scalar	  fields	  (dilaton,	  axions,	  moduli…)	  
q  Not	  seen	  yet:	  dynamics	  must	  be	  frozen	  

ü  small	  coupling	  ξ	  -‐	  or	  equivalently	  large	  ωBD∼1/ξ	  
ü  large	  mass	  m>1/R	  (1AU∼10-‐18eV!)	  

	  

3)	  Cosmology	  
q  “String	  axiverse”:	  light	  axions,	  10-‐33eV	  <	  ms	  <	  10-‐18eV	  [Arvanitaki++,	  0905.4720]	  

Striking	  astrophysical	  implica.ons:	  bosenovas,	  floa.ng	  orbits	  
	  

4)	  Open	  problems	  in	  scalar-‐tensor	  theory:	  
q  Are	  black	  hole	  binaries	  indisEnguishable	  in	  GR	  and	  scalar-‐tensor	  theories?	  	  

[Horbatsch+Burgess,	  1111:4009;	  Healy++,	  1112.3928]	  
 



Post-‐Newtonian	  effects	  in	  massive	  scalar-‐tensor	  theories	  

ü  Shapiro	  .me	  delay	  (Cassini)	  
ü  Nordtvedt	  effect	  (Lunar	  Laser	  Ranging)	  
ü  Orbital	  period	  deriva.ve	  (binary	  pulsars)	  

resonant, superradiant effects induced by light, massive
scalars may produce ‘‘floating orbits’’ when small compact
objects inspiral into rotating black holes, leaving a distinct
signature in gravitational waves [12,13].

A commonly held belief is that only mixed binaries
(i.e., binaries whose members have different gravitational
binding energy) can produce significant amounts of scalar
gravitational radiation. There are two reasons for this. The
first is that, under standard assumptions, dipole radiation is
produced due to violations of the strong equivalence
principle when the binary members have unequal
‘‘sensitivities’’: s1 ! s2. These sensitivities are defined in
Eq. (11), and they are related to the gravitational binding
energy of each binary member. In other words, dipole
radiation is produced when the system’s center of mass is
offset with respect to the center of inertia (see e.g. [3]), so
that mixed binaries and eccentric binaries would be the best
target to constrain scalar-tensor theories. The second reason
is the black hole no-hair theorem, i.e. the fact that black hole
solutions in scalar-tensor theories are the same as inGR (see
[14] and references therein). Building on earlier work by
Jacobson [15], Horbatsch and Burgess recently pointed out
that slowly varying scalar fields may violate the no-hair
theorem, so that even black hole-black hole binaries may
produce dipole radiation [16]. They also developed a for-
malism to test generic scalar-tensor theories using binary
pulsars [17].

For all these reasons, a study of gravitational radiation in
massive scalar-tensor theories is quite timely. In this paper
we derive the period derivative due to scalar and tensor
radiation in theories with a massive scalar field. For sim-
plicity we focus on circular binaries, but (as we will see
below) the generalization of our results to eccentric bi-
naries would be of great observational interest.1

For the reader’s convenience, here we give an executive
summary of our main results. Consider a compact binary in
circular orbit with component masses mi and sensitivities
si (i ¼ 1, 2). Then the period derivative due to the emission
of scalar and tensor gravitational waves in the massive
Brans-Dicke (BD) theory is

_P

P
¼ " 8

5
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r4
"1 "
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"DS2; (1)
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"1¼G2
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where " is the Heaviside function, r is the separation
of the binary members, ms is the mass of the scalar field,

m ¼ m1 þm2 and! ¼ m1m2=m are the total and reduced
masses of the system, S & s2 " s1 and furthermore

# ¼ 1

2þ!BD
;

G ¼ 1" #ðs1 þ s2 " 2s1s2Þ;

! ¼ 1" 2
s1m2 þm1s2

m
:

Note that scalar dipole radiation is emitted only when the
binary’s orbital frequency !>ms and the difference in
sensitivities S ! 0, while scalar quadrupole/monopole ra-
diation is emitted only when 2!>ms and it also vanishes
for two black holes (since in that case s1 ¼ s2 ¼ 1=2 and
! ¼ 0). This result is only strictly valid in the limit of a
very massive (msr ' 1) or very light (msr ( 1) scalar.
However corrections due to an intermediate mass scalar
always enter with at least a factor of the small parameter #,
so this should be a relatively good approximation for the
full range of scalar masses.
In addition to deriving the orbital period derivative due

to gravitational radiation, we also revisit the calculations of
the Shapiro time delay and of the Nordtvedt effect in the
massive Brans-Dicke theory. As we will see, the presence
of the massive scalar does not allow a straightforward
implementation of the parametrized post-Newtonian
(PPN) formalism. By comparing our results for the orbital
period derivative, Shapiro time delay and Nordtvedt pa-
rameter against recent observational data, we put con-
straints on the parameters of the theory: the scalar mass
ms and the Brans-Dicke coupling parameter !BD. Our
bounds are summarized in Fig. 1.
We find that the most stringent bounds come from the

observations of the Shapiro time delay in the Solar System
provided by the Cassini mission (these bounds were al-
ready studied by Perivolaropoulos, although he used a
slightly different notation [18]). From the Cassini obser-
vations we obtain!BD > 40 000 forms < 2:5) 10"20 eV,
to 95% confidence. Observations of the Nordtvedt effect
using the lunar laser ranging experiment yield a slightly
weaker bound of !BD > 1000 for ms < 2:5) 10"20 eV.
Observations of the orbital period derivative of the circular
white-dwarf-neutron-star (WD-NS) binary system PSR
J1012þ 5307 yields !BD > 1250 for ms < 10"20 eV.
The limiting factor here is our ability to obtain precise
measurements of the masses of the component stars as well
as of the orbital period derivative, once kinematic correc-
tions have been accounted for. However, there is consid-
erably more promise in the eccentric binary system PSR
J1141" 6545. This system has allowed for remarkably
precise measurements of the orbital period derivative, of
the component star masses, and of the periastron shift,
making it a promising candidate for constraining alterna-
tive theories of gravity. Unfortunately the system has
non-negligible eccentricity. Generalizing our result for

1We will be working in units ℏ ¼ c ¼ G ¼ 1 throughout the
paper. Greek indices will span both spatial and time components
0, 1, 2, 3. Roman indices run over the spatial components 1, 2, 3
only. We will adopt the metric signature ð";þ;þ;þÞ.
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resonant, superradiant effects induced by light, massive
scalars may produce ‘‘floating orbits’’ when small compact
objects inspiral into rotating black holes, leaving a distinct
signature in gravitational waves [12,13].

A commonly held belief is that only mixed binaries
(i.e., binaries whose members have different gravitational
binding energy) can produce significant amounts of scalar
gravitational radiation. There are two reasons for this. The
first is that, under standard assumptions, dipole radiation is
produced due to violations of the strong equivalence
principle when the binary members have unequal
‘‘sensitivities’’: s1 ! s2. These sensitivities are defined in
Eq. (11), and they are related to the gravitational binding
energy of each binary member. In other words, dipole
radiation is produced when the system’s center of mass is
offset with respect to the center of inertia (see e.g. [3]), so
that mixed binaries and eccentric binaries would be the best
target to constrain scalar-tensor theories. The second reason
is the black hole no-hair theorem, i.e. the fact that black hole
solutions in scalar-tensor theories are the same as inGR (see
[14] and references therein). Building on earlier work by
Jacobson [15], Horbatsch and Burgess recently pointed out
that slowly varying scalar fields may violate the no-hair
theorem, so that even black hole-black hole binaries may
produce dipole radiation [16]. They also developed a for-
malism to test generic scalar-tensor theories using binary
pulsars [17].

For all these reasons, a study of gravitational radiation in
massive scalar-tensor theories is quite timely. In this paper
we derive the period derivative due to scalar and tensor
radiation in theories with a massive scalar field. For sim-
plicity we focus on circular binaries, but (as we will see
below) the generalization of our results to eccentric bi-
naries would be of great observational interest.1

For the reader’s convenience, here we give an executive
summary of our main results. Consider a compact binary in
circular orbit with component masses mi and sensitivities
si (i ¼ 1, 2). Then the period derivative due to the emission
of scalar and tensor gravitational waves in the massive
Brans-Dicke (BD) theory is
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where " is the Heaviside function, r is the separation
of the binary members, ms is the mass of the scalar field,

m ¼ m1 þm2 and! ¼ m1m2=m are the total and reduced
masses of the system, S & s2 " s1 and furthermore

# ¼ 1

2þ!BD
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G ¼ 1" #ðs1 þ s2 " 2s1s2Þ;
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Note that scalar dipole radiation is emitted only when the
binary’s orbital frequency !>ms and the difference in
sensitivities S ! 0, while scalar quadrupole/monopole ra-
diation is emitted only when 2!>ms and it also vanishes
for two black holes (since in that case s1 ¼ s2 ¼ 1=2 and
! ¼ 0). This result is only strictly valid in the limit of a
very massive (msr ' 1) or very light (msr ( 1) scalar.
However corrections due to an intermediate mass scalar
always enter with at least a factor of the small parameter #,
so this should be a relatively good approximation for the
full range of scalar masses.
In addition to deriving the orbital period derivative due

to gravitational radiation, we also revisit the calculations of
the Shapiro time delay and of the Nordtvedt effect in the
massive Brans-Dicke theory. As we will see, the presence
of the massive scalar does not allow a straightforward
implementation of the parametrized post-Newtonian
(PPN) formalism. By comparing our results for the orbital
period derivative, Shapiro time delay and Nordtvedt pa-
rameter against recent observational data, we put con-
straints on the parameters of the theory: the scalar mass
ms and the Brans-Dicke coupling parameter !BD. Our
bounds are summarized in Fig. 1.
We find that the most stringent bounds come from the

observations of the Shapiro time delay in the Solar System
provided by the Cassini mission (these bounds were al-
ready studied by Perivolaropoulos, although he used a
slightly different notation [18]). From the Cassini obser-
vations we obtain!BD > 40 000 forms < 2:5) 10"20 eV,
to 95% confidence. Observations of the Nordtvedt effect
using the lunar laser ranging experiment yield a slightly
weaker bound of !BD > 1000 for ms < 2:5) 10"20 eV.
Observations of the orbital period derivative of the circular
white-dwarf-neutron-star (WD-NS) binary system PSR
J1012þ 5307 yields !BD > 1250 for ms < 10"20 eV.
The limiting factor here is our ability to obtain precise
measurements of the masses of the component stars as well
as of the orbital period derivative, once kinematic correc-
tions have been accounted for. However, there is consid-
erably more promise in the eccentric binary system PSR
J1141" 6545. This system has allowed for remarkably
precise measurements of the orbital period derivative, of
the component star masses, and of the periastron shift,
making it a promising candidate for constraining alterna-
tive theories of gravity. Unfortunately the system has
non-negligible eccentricity. Generalizing our result for

1We will be working in units ℏ ¼ c ¼ G ¼ 1 throughout the
paper. Greek indices will span both spatial and time components
0, 1, 2, 3. Roman indices run over the spatial components 1, 2, 3
only. We will adopt the metric signature ð";þ;þ;þÞ.
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resonant, superradiant effects induced by light, massive
scalars may produce ‘‘floating orbits’’ when small compact
objects inspiral into rotating black holes, leaving a distinct
signature in gravitational waves [12,13].

A commonly held belief is that only mixed binaries
(i.e., binaries whose members have different gravitational
binding energy) can produce significant amounts of scalar
gravitational radiation. There are two reasons for this. The
first is that, under standard assumptions, dipole radiation is
produced due to violations of the strong equivalence
principle when the binary members have unequal
‘‘sensitivities’’: s1 ! s2. These sensitivities are defined in
Eq. (11), and they are related to the gravitational binding
energy of each binary member. In other words, dipole
radiation is produced when the system’s center of mass is
offset with respect to the center of inertia (see e.g. [3]), so
that mixed binaries and eccentric binaries would be the best
target to constrain scalar-tensor theories. The second reason
is the black hole no-hair theorem, i.e. the fact that black hole
solutions in scalar-tensor theories are the same as inGR (see
[14] and references therein). Building on earlier work by
Jacobson [15], Horbatsch and Burgess recently pointed out
that slowly varying scalar fields may violate the no-hair
theorem, so that even black hole-black hole binaries may
produce dipole radiation [16]. They also developed a for-
malism to test generic scalar-tensor theories using binary
pulsars [17].

For all these reasons, a study of gravitational radiation in
massive scalar-tensor theories is quite timely. In this paper
we derive the period derivative due to scalar and tensor
radiation in theories with a massive scalar field. For sim-
plicity we focus on circular binaries, but (as we will see
below) the generalization of our results to eccentric bi-
naries would be of great observational interest.1

For the reader’s convenience, here we give an executive
summary of our main results. Consider a compact binary in
circular orbit with component masses mi and sensitivities
si (i ¼ 1, 2). Then the period derivative due to the emission
of scalar and tensor gravitational waves in the massive
Brans-Dicke (BD) theory is

_P

P
¼ " 8

5

!m2

r4
"1 "

!m

r3
"DS2; (1)

where

"1¼G2

!
12"6#þ#!2

"
4!2"m2

s

4!2

#
2
"ð2!"msÞ

$
;

"D¼2G#
!2"m2

s

!2 "ð!"msÞ;
(2)

where " is the Heaviside function, r is the separation
of the binary members, ms is the mass of the scalar field,

m ¼ m1 þm2 and! ¼ m1m2=m are the total and reduced
masses of the system, S & s2 " s1 and furthermore

# ¼ 1
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Note that scalar dipole radiation is emitted only when the
binary’s orbital frequency !>ms and the difference in
sensitivities S ! 0, while scalar quadrupole/monopole ra-
diation is emitted only when 2!>ms and it also vanishes
for two black holes (since in that case s1 ¼ s2 ¼ 1=2 and
! ¼ 0). This result is only strictly valid in the limit of a
very massive (msr ' 1) or very light (msr ( 1) scalar.
However corrections due to an intermediate mass scalar
always enter with at least a factor of the small parameter #,
so this should be a relatively good approximation for the
full range of scalar masses.
In addition to deriving the orbital period derivative due

to gravitational radiation, we also revisit the calculations of
the Shapiro time delay and of the Nordtvedt effect in the
massive Brans-Dicke theory. As we will see, the presence
of the massive scalar does not allow a straightforward
implementation of the parametrized post-Newtonian
(PPN) formalism. By comparing our results for the orbital
period derivative, Shapiro time delay and Nordtvedt pa-
rameter against recent observational data, we put con-
straints on the parameters of the theory: the scalar mass
ms and the Brans-Dicke coupling parameter !BD. Our
bounds are summarized in Fig. 1.
We find that the most stringent bounds come from the

observations of the Shapiro time delay in the Solar System
provided by the Cassini mission (these bounds were al-
ready studied by Perivolaropoulos, although he used a
slightly different notation [18]). From the Cassini obser-
vations we obtain!BD > 40 000 forms < 2:5) 10"20 eV,
to 95% confidence. Observations of the Nordtvedt effect
using the lunar laser ranging experiment yield a slightly
weaker bound of !BD > 1000 for ms < 2:5) 10"20 eV.
Observations of the orbital period derivative of the circular
white-dwarf-neutron-star (WD-NS) binary system PSR
J1012þ 5307 yields !BD > 1250 for ms < 10"20 eV.
The limiting factor here is our ability to obtain precise
measurements of the masses of the component stars as well
as of the orbital period derivative, once kinematic correc-
tions have been accounted for. However, there is consid-
erably more promise in the eccentric binary system PSR
J1141" 6545. This system has allowed for remarkably
precise measurements of the orbital period derivative, of
the component star masses, and of the periastron shift,
making it a promising candidate for constraining alterna-
tive theories of gravity. Unfortunately the system has
non-negligible eccentricity. Generalizing our result for

1We will be working in units ℏ ¼ c ¼ G ¼ 1 throughout the
paper. Greek indices will span both spatial and time components
0, 1, 2, 3. Roman indices run over the spatial components 1, 2, 3
only. We will adopt the metric signature ð";þ;þ;þÞ.
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such that hð!Þ ! !. These two redefinitions recast the
action into the form

S ¼ 1

16"

Z !
!R$!ð!Þ

!
g#$!;#!;$ þMð!Þ

"
ð$gÞ1=2d4x

þ
Z

LMðg#$;!Þd4x; (6)

which has the additional advantage that the resulting weak-
field equations for g#$ and ! decouple from one another.
The generic theory now contains two undetermined func-
tions: the cosmological function Mð!Þ and the coupling
function !ð!Þ (in the language of [20]). The effect of the
coupling function on compact binary dynamics has been
studied extensively, and it can lead to interesting conse-
quences if ‘‘spontaneous scalarization’’ occurs [11,21–24].
Here we focus on the cosmological function, which has
three major effects in the generic theory. First, in the
resulting field equations for g#$ it plays the role of a
cosmological constant. Second, it endows the scalar with
mass: this manifests itself most clearly in the fact that
solutions for ! for isolated systems contain Yukawa-like
terms e$msr=r, where ms is the mass of the scalar field,
which in turn gives the field a characteristic range
‘& 1=ms [20]. Finally, the cosmological function may
introduce nonlinearities in the dynamics of the scalar
field.

B. The matter action and the field equations

Let us now turn to the matter action. Throughout this
paper we will make the assumption that all bodies in our
system can be treated as point masses. Einstein, Infeld, and
Hoffmann (EIH) [25] developed a method for obtaining the
equations of motion for a system of gravitating pointlike
masses. In their approach, one begins by obtaining the
local gravitational field of a single body (in a comoving
frame), under the assumption that the body is small and
nearly spherical. One then proceeds to match the interbody
gravitational fields onto the obtained local field of the
single body under inspection; imposing self-consistency
yields the EIH equations of motion. The same equations of
motion can be obtained with significantly less effort, albeit
at the sacrifice of some rigor, by taking the stress-energy
tensor to be a distribution of delta functions and neglecting
any infinite self-energy terms as they arise [20]. In scalar-
tensor theory, however, we must deal with the additional
complication that the inertial mass and internal structure of
a gravitating body will depend on the local value of the
scalar field (i.e. the local value of the effective gravitational
‘‘constant’’). Variations in internal structure may act back
on the motion of the body, leading to violations of the
(weak) equivalence principle. Eardley [26] showed that
these effects could be accounted for by simply supposing
that the masses of the bodies are in general functions of the

scalar field, such that the matter action for a system of
pointlike masses can be written as

SM ¼ $
X

a

Z
mað!Þd%a; (7)

where the particles (labeled by a) have inertial masses
mað!Þ, and %a is the proper time of particle a measured
along its worldline x&a . The distributional stress-energy
tensor T#$ and its trace T hence take the form

T#$ðx&Þ ¼ ð$gÞ$1=2
X

a

mað!Þ u
#u$

u0
'4ðx& $ x&aÞ; (8)

T ¼ g#$T
#$ ¼ $ð$gÞ$1=2

X

a

mað!Þ
u0

'4ðx& $ x&aÞ: (9)

Far from the system, the scalar will take on its cosmolog-
ically imposed value, denoted by !0. The relationship
between the effective gravitational constant, G, and
the scalar field ! is therefore (in our chosen system of
units) G ¼ !0=!. In the post-Newtonian limit, we
expand ! about its asymptotic value and define the
small perturbation ’ such that ! ¼ !0 þ ’. In this
case, we can write the variation of the inertial masses
ma with ! as

mað!Þ ¼ maðlnGÞ

¼ mað!0Þ
!
1þ sa

#
’

!0

$
$ 1

2
ðs0a $ s2a þ saÞ

#
’

!0

$
2

þO
##

’

!0

$
3
$"

; (10)

where we have defined the ‘‘first and second sensitivities’’
sa and s0a to be2

sa ¼ $@ðlnmaÞ
@ðlnGÞ

%%%%%%%%!0

; s0a ¼ $ @2ðlnmaÞ
@ðlnGÞ2

%%%%%%%%!0

: (11)

The full action is now given by

S ¼ 1

16"

Z !
!R$!ð!Þ

!
g#$!;#!;$ þMð!Þ

"
ð$gÞ1=2d4x

$
X

a

Z
mað!Þd%a: (12)

By varying the action (12) with respect to the tensor and
scalar fields, respectively, we obtain the full field equations
of the generic theory described above:

2White dwarfs typically have sensitivities sa & 10$4, neutron
stars have sensitivities sa & 0:2, and black holes have sa ¼ 1=2:
see [27] for detailed calculations.
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1)	  No	  dipole	  if	  S=s1-‐s2=0	  (need	  NS-‐BH!)	  
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Small	  coupling	  or	  small	  mass?	  
Bounds	  from:	  

ü  Shapiro	  .me	  delay	  [Perivolaropoulos]	  
ü  Lunar	  Laser	  Ranging	  
ü  Binary	  pulsars	  -‐	  new	  binary	  pulsar:	  ωBD>25,000	  [Freire++,	  1205.1450]	  

For	  light	  scalars	  we	  can	  assume	  small	  coupling	  

the orbital period derivative to eccentric binaries is a
significant (but worthy) algebraic undertaking.

The plan of the paper is as follows. In Sec. II we
describe and motivate the Brans-Dicke theory with a
massive scalar field. In Sec. III we perform a post-
Newtonian expansion of the field equations. In Sec. IV
we deal with the Shapiro time delay. In Sec. V we proceed
to obtain the equations of motion of a binary system as
well as the periastron shift. In Sec. VI we discuss the
Nordtvedt effect. In Sec. VII we give details of the deri-
vation of the gravitational radiation damping of a compact
binary system due to scalar and tensor gravitational radia-
tion. In Sec. VIII we use these results to put bounds on
the parameters of the theory. In Sec. IX we point out
possible future extensions of our work. Appendix A
outlines a step-by-step derivation of the post-Newtonian
expansion of the scalar field and of the metric.
Appendix B provides details on certain integrals that
appear in the calculation of the energy flux. Finally,
Appendix C contains a short summary of compact binary
observations relevant to this work.

II. THE BRANS-DICKE THEORY WITH A
MASSIVE SCALAR FIELD

A. The generic scalar-tensor theory with
a single scalar field

A general class of scalar-tensor theories containing a
single scalar field in addition to the tensor field was studied
by Bergmann and Wagoner [8,19]. We can characterize the
Bergmann-Wagoner theory via the following postulates:

(1) The principle of general covariance is imposed,
leading to tensorial equations.

(2) The field equations are derived from the action

S ¼
Z
ðLG þLMÞd4x; (3)

where LG and LM are the Lagrangian densities for the
gravitational and matter fields, respectively.
(3) We postulate that the long-range forces of nature are

mediated by the three lowest spin bosons and assume that
the electromagnetic field is the only vector field. This
leaves a scalar degree of freedom ! and a tensor degree
of freedom (the metric g"#) to describe the dynamics of the
gravitational field.
(4) The field equations are of at most of second differ-

ential order, and the tensor and scalar fields are nonmini-
mally coupled; this leads us to the general form

LG ¼ ð%gÞ1=2½hð!ÞRþ lð!Þg"#!;"!;# þ $ð!Þ' (4)

for the gravitational Lagrangian density, where hð!Þ, lð!Þ,
and $ð!Þ are arbitrary functions of the scalar field !.
(5) We postulate a principle of mutual coupling, in

which the matter Lagrangian density depends on the gravi-
tational fields according to

LM ¼ LMðc 2ð!Þg"#;!Þ; (5)

where c ð!Þ is a fourth arbitrary function of !, and !
represents the collective matter fields. This guarantees
consistency with the strong equivalence principle [1].
Now let us make the conformal transformation g"# !

c 2ð!Þg"#, and in doing so move into a conformal frame in
which the matter fields do not couple directly (but only
indirectly, via the metric) to the scalar field; this is com-
monly referred to as the Jordan frame [1,3]. Furthermore,
without loss of generality we can redefine the scalar field
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FIG. 1 (color online). Left panel: Lower bound on ð!BD þ 3=2Þ as a function of the mass of the scalar ms from the Cassini mission
data (solid black line; cf. [18]), period derivative observations of PSR J1141% 6545 (dashed red line) and PSR J1012þ 5307 (dot-
dashed green line), and lunar laser ranging experiments (dotted blue line). Vertical lines indicate the masses corresponding to the
typical radii of the systems: 1 AU (solid black line) and the orbital radii of the two binaries (dashed red and dot-dashed green lines).
Right panel: Upper bound on % as a function of ms. Line styles are the same as in the left panel. Note that the theoretical bounds on the
coupling parameters are !>%3=2 and %< 2.
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Let m20 = 10−20 eV be the typical scalar mass below which we get bounds on the scalar coupling from Solar System
experiments [11, 41], and let M" be the mass of the Sun. We get the scaling

ν = 5.60× 10−21

(

ms

m20

)2 ( m

M"

)2

, (9)

so that a binary with m = 106M" (a typical target for eLISA) could have at most ν ∼ 5.60× 10−9 when ms = m20.
With this definition we can write

ḟ =
96

5
π8/3M5/3f11/3

{

1−
2

3
ξ(s1 + s2 − 2s1s2)−

1

2
ξ

+

[

ξΓ2

12

(

1−
ν

2(πmf)2
+

ν2

16(πmf)4

)

Θ(2πf −ms)

+
5ξS2

48

(

1

(πmf)2/3
−

ν

(πmf)8/3

)

Θ(πf −ms)

]
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}

. (10)

Furthermore, we note that (dubbing either f0 = ms/(2π) or f0 = ms/π)

∫ f

−∞
df ′(f ′)nΘ(f ′ − f0) = Θ(f − f0)

∫ f

f0

df ′(f ′)n

= Θ(f − f0)
fn+1

n+ 1
+ constant (11)

where integration constants can be absorbed in the constants (tc, φc) appearing in Eq. (12) below.
The final result for the phase in the SPA is

ψ(f) = 2πftc − φc −
π

4
+

3

128(πMf)5/3
×

×
{

1 + ξ

[
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3
(s1 + s2 − 2s1s2) +

1

2
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Γ2

12
Θ(2πf −ms)

]

+
20

9
Av2 − 16πv3 + . . .

+ ξνΓ2

[

5

462
v−6 −

ν

1632
v−12

]

Θ(2πf −ms)

+ ξS2

[

25ν

1248
v−8 −

5

84
v−2

]

Θ(πf −ms)
}

(12)

where

v = (πmf)1/3 = (πMf)1/3η−1/5 (13)

and we defined

ζ =
2

3
ξ (s1 + s2 − 2s1s2) +

ξ

2
−
ξΓ2

12
Θ(2πf −ms) . (14)

Adding higher-order corrections in the post-Newtonian velocity parameter v = (πmf)1/3 = (πMf)1/3η−1/5 to the
standard GR phase is trivial. Eq. (2.2) of [24] lists all contributions up to 2PN (including spin-orbit and spin-spin
interactions). Here we ignore spins, but we do include all nonspinning contributions up to 3.5PN order: cf. Eq. (3.3)
and (3.4) of [42].

Arun [34] recently argued on general grounds that dipolar emission in generic extensions of general relativity should
always introduce a term proportional to v−2 in the SPA. Our calculation shows that a nonzero mass of the scalar
introduces additional structure in the waveform: in particular, Eq. (12) contains terms proportional to ν (and hence
to m2

s) that scale like v−12, v−8 and v−6. Arun’s argument to constrain dipolar radiation [34], while correct when
ms = 0, is not general enough to cover all scalar-tensor theories (let alone theories whose action contains quadratic
or higher-order terms in the curvature, such as Gauss-Bonnet or Chern-Simons modified gravity [33]). While these
large negative powers of v could in principle be strongly dominant over “standard” quadrupolar radiation at small

Mass-‐dependent	  terms	  always	  scale	  with	  	  
νξ∼ms

2/ωBD	  	  (ν=ms
2/m2)	  
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FIG. 1. Bounds on ms/
√
ωBD with AdLIGO, AdLIGO ZDHP, ET, Classic LISA and eLISA/NGO. Left panel: bounds for

binaries at luminosity distance DL = 200 Mpc (z " 0.046). Right panel: bounds at fixed SNR ρ = 10.

of scalar gravitational radiation. Under the assumption
of asymptotic flatness, dipole radiation is produced due
to violations of the strong equivalence principle when the
binary members have unequal “sensitivities”: s1 != s2.
The sensitivities are related to the gravitational binding
energies of each binary member (labeled by a = 1 , 2):
sa = 1/2 for a Schwarzschild black hole, sa ∼ 0.2 for a
neutron star, and sa ∼ 10−4 for a white dwarf [19, 29].
Roughly speaking, dipole radiation is produced when the
system’s center of mass is offset with respect to the cen-
ter of inertia, so mixed and eccentric binaries are the best
target to constrain scalar-tensor theories. A second rea-
son to consider neutron star-black hole binaries is that
dipolar radiation should not be emitted in black hole-
black hole systems because of the no-hair theorem, i.e.
the fact that black hole solutions in scalar-tensor theories
are the same as in GR (see [30] and references therein).
Recently, building on earlier work by Jacobson [31], Hor-
batsch and Burgess pointed out that scalar fields that
vary on cosmological timescales may violate the no-hair
theorem, so that even black hole-black hole binaries may
produce dipole radiation [32]. The existence of dipole
radiation in extended theories of gravity and the investi-
gation of possible bounds on dipolar radiation are active
research topics [33, 34].

In summary, here we will make the conservative as-
sumption that only mixed binaries generate dipolar ra-
diation, and we will investigate bounds on the mass and
coupling of the scalar field coming from gravitational-
wave observations of black hole-neutron star binaries.
For simplicity we will set the mass of the neutron star
to be MNS = 1.4 M", and we will focus on nonrotating
black holes. This rules out by construction the possibility
of floating orbits of the kind studied in [26, 27].

We will consider the bounds that could be obtained us-
ing different gravitational-wave detectors. For Advanced
LIGO we use the fit to the expected power spectral den-
sity given in Table I of [35] (henceforth “AdLIGO”) as

well as the zero-detuning, high power configuration, as
given analytically in Eq. (4.7) of [36] (“AdLIGO ZDHP”).
In both cases we assume the power spectral density to be
infinite below a seismic noise cutoff frequency of 20 Hz.
For the Einstein Telescope we used the analytical fit pre-
sented in Table I of [35], assuming a lower cutoff fre-
quency of 10 Hz. For Classic LISA we use the analytical
Barack–Cutler expression [37], as corrected in [24]. For
eLISA/NGO we use the noise model (inclusive of galactic
background noise) discussed in [17].

Throughout the paper we use geometrical units G =
c = 1, so all quantities can be expressed in (say) seconds:
for example, the mass of the sun M" = 4.926 × 10−6 s.
We assume a standard ΛCDM cosmological model with
H0 = 72 km s−1Mpc−1, ΩM = 0.3 and ΩΛ = 0.7.

Denote the scalar field mass (in eV) by m̃s. We find
it convenient to define a quantity ms = m̃s/! with di-
mensions of inverse length (or inverse time, since c = 1),
as this is the quantity that would appear in the flat-
space Klein-Gordon equation (! − m2

s)ϕ = 0. To con-
vert between m̃s and ms, it is sufficient to note that
! = 6.582 × 10−16 eV s. We will use m̃s and ms inter-
changeably in the rest of the paper; the units should be
clear from the context.

By computing the gravitational-wave phase in the
stationary-phase approximation (SPA; cf. Eq. (12) be-
low) we will see that the scalar mass always contributes
to the phase in the combination m2

sξ ∼ m2
s/ωBD, so that

gravitational-wave observations of nonspinning, quasi-
circular inspirals can only constrain the combination
ms/

√
ωBD. The bounds we could obtain on this param-

eter using different detectors are summarized in Fig. 1,
where the bounds for neutron star-black hole binaries
are plotted as a function of the black hole mass MBH.
The order of magnitude of the bounds can easily by un-
derstood by noting that ms(eV) = 6.582 × 10−16 f(Hz),
or equivalently f(Hz) = 1.5193 × 1015 m̃s(eV). For
eLISA, the lower cutoff frequency (imposed by acceler-
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FIG. 4. Bound on ωBD obtained and considering a six-parameter Fisher matrix at fixed SNR ρ = 10. Left: we set ms ∝ ν = 0
and consider a six-parameter Fisher matrix. Right: same, but for a seven-parameter Fisher matrix with ν "= 0.

We consider neutron star-black hole binaries where
the neutron star has mass MNS = 1.4M!, and we vary
the black hole mass in a range depending on the op-
timal sensitivity window of each detector. Bounds are
inversely proportional to the SNR, which in turn is in-
versely proportional to the luminosity distance of the
binary (ρ ∼ 1/DL). To facilitate rescaling of our re-
sults, in Fig. 3 we plot the SNR of neutron star-black
hole binaries at luminosity distance DL = 200 Mpc as a
function of the black hole mass MBH, for all five detec-
tors. Note that AdLIGO and AdLIGO ZDHP are very
similar in terms of SNR. The same applies to Classic
LISA and eLISA: in fact, eLISA has slightly larger SNR
when MBH ! 2000 M!, mainly because the eLISA “arm-
length” is a factor of five smaller with respect to Classic
LISA (see [17]).

The bounds that can be placed on ms/
√
ωBD were dis-

cussed in Section I. In Fig. 4 we complement those results
by plotting the bounds on ωBD, estimated as in [24]. The
left panel shows the bounds on ωBD that we would obtain
if we considered massless scalar tensor theories, as in [24].
In the right panel we show that when ms #= 0 the bounds
get worse by about one order of magnitude. This is ex-
pected: we are adding one additional, highly correlated
parameter to the waveform, and this reduces parame-
ter estimation accuracy on all intrinsic parameters of the
binary by roughly one order of magnitude. This degra-
dation of the bounds is analogous to what happens when
we add spin-orbit terms to the SPA: cf. the discussion
around Table IV of [24]. As we could expect from the
SNR plots, AdLIGO bounds are very similar to AdLIGO
ZDHP bounds, and eLISA does slightly better than LISA
for small black hole masses. Whether we consider mas-
sive or massless scalar-tensor theories, the best bounds
(competitive with the Cassini bound) would come from
observations of the intermediate mass-ratio inspiral of a
neutron star into a black hole of mass MBH ! 103 M!,
as observed by a space-based instrument such as eLISA
or Classic LISA.

V. CONCLUSIONS AND OUTLOOK

In this paper we have studied the bounds on mas-
sive scalar tensor theories with constant coupling from
gravitational-wave observations of quasicircular, non-
spinning neutron star-black hole binary inspirals in the
restricted post-Newtonian approximation. We found
that neutron star-black hole systems will yield bounds
(ms/

√
ωBD)(ρ/10) ! 10−15, 10−16 and 10−19 eV for Ad-

vanced LIGO, ET and Classic LISA/eLISA, respectively.
We also found that the best bounds on ωBD would come
from space-based observations of the intermediate mass-
ratio inspiral of a neutron star into a black hole of mass
MBH ! 103 M!.

It would be interesting to drop the restricted post-
Newtonian approximation and to consider amplitude cor-
rections in the context of massive scalar-tensor theories
(cf. [35, 36] for recent work in this direction). Further-
more, in our analysis we have neglected time delay effects
which arise because the massive scalar modes propagate
slower than the massless tensor modes; while presumably
small, it is worthwhile to investigate how these effects
would change our bounds. Another obvious extension
of this work would be to include spin precession, orbital
eccentricity and the merger/ringdown waveform. All of
these effects could improve our conservative estimate of
the bounds on ms and ωBD. Finally, it would be inter-
esting to estimate the improvement on the bounds that
would result from observing several neutron star-black
hole systems with one or more detectors (see e.g. [40, 45]
for preliminary studies in a slightly different context).
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3

100 101 102 103 104

MBH/MO.

10-19

10-18

10-17

10-16

10-15

10-14

10-13

m
s/ω

BD1/
2 

(e
V)

AdLIGO
AdLIGO ZDHP
Einstein Telescope
Classic LISA
eLISA/NGO

ρ=10
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ωBD with AdLIGO, AdLIGO ZDHP,

ET, Classic LISA and eLISA/NGO at fixed SNR ρ = 10.

10−16 f(Hz), or equivalently f(Hz) = 1.5× 1015 ms(eV).
For eLISA, the lower cutoff frequency (imposed by ac-
celeration noise) fcut ∼ 10−5 Hz corresponds to a scalar
of mass ms # 6.6× 10−21 eV. For Earth-based detectors
the typical seismic cutoff frequency is ∼ 10 Hz, corre-
sponding to fcut ∼ 6.6 × 10−16 eV. These lower cutoff
frequencies set the order of magnitude of scalar masses
probed by space-based and Earth-based detectors.

The best bounds are obtained from the intermediate
mass-ratio inspiral of a neutron star into a black hole of
mass MBH ! 103 M", as observed by a space-based in-
strument such as eLISA or Classic LISA. In summary, we
conclude that the most competitive bounds would come
from space-based gravitational wave detectors, and that
they would be of the order

(

ms√
ωBD

)

( ρ

10

)

! 10−19 eV. (5)
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FIG. 2. Bounds from eLISA/NGO at SNR ρ = 10, compared
to Solar System and binary pulsar bounds.

In Fig. 2, straight lines show the lower bounds on ωBD

as a function of ms from eLISA observations of neutron
star-black hole binaries where the black hole has mass
MBH = 300 M" (solid line) and MBH = 3 × 104 M"
(dashed line). These bounds are compared with current
bounds on ωBD as a function of ms coming from (1)
Cassini measurements of the Shapiro time delay (solid
black line), (2) Lunar Laser Ranging bounds on the
Nordtvedt effect (dotted blue line), and (3) measure-
ments of the orbital period derivative of two binary pulsar
systems (we refer the reader to [11] for a detailed discus-
sion of these bounds).

Gravitational-wave observations with ρ = 10 become
competitive with binary pulsar bounds when ms "
10−19 eV, and competitive with Cassini bounds when
ms " 10−18 eV, with the exact “transition point” de-
pending on the SNR of the observation: recall that for a
gravitational-wave observation with SNR ρ = 100 the
“straight line” bounds in Fig. 2 would be ten times
higher. Therefore, a single high-SNR observation (or
the statistical combination of several observations, see
e.g. [40]) may yield better bounds on the scalar coupling
than weak-gravity observations in the Solar System when
ms " 10−18 eV.

By comparing Fig. 2 with Fig. 4 below, we see that
bounds on ωBD from gravitational-wave observations can
be marginally better than the Cassini bound only for
neutron star-black hole systems with MBH ! 103 M",
as observed by eLISA. For all other gravitational-wave
observations the upper bound on ms can be inferred by
multiplying the values plotted in Fig. 1 by the square
root of the Cassini bound,

√
ωCass = 200.

The plan of the paper is as follows. In Section II we
compute the gravitational-wave phase for massive scalar-
tensor theories in the stationary phase approximation. In
Section III we use these results to compute the Fisher in-
formation matrix in these theories. Section IV presents
the bounds obtainable with Earth- and space-based in-
terferometers. Section V discusses possible directions for
future research.

II. STATIONARY PHASE APPROXIMATION
IN MASSIVE SCALAR-TENSOR THEORIES

As discussed in Section I, we focus on scalar-tensor the-
ories with constant coupling and a massive scalar field,
following the treatment and notation of [11]. We consider
the inspiral of a binary system composed of two compact
objects with masses m1 and m2. For consistency with
the notation of [24], here and below all masses mi are
measured in the detector frame; they are related to the

masses m(0)
i in the source frame by mi = (1 + z)m(0)

i .
Let m = m1 + m2 be the total mass of the binary,
µ = ηm = (m1m2)/(m1 +m2) the reduced mass (with η
the symmetric mass ratio), and M = µ3/5m2/5 = η3/5m

Small	  coupling	  or	  small	  mass?	  
Bounds	  from:	  

ü  Shapiro	  .me	  delay	  [Perivolaropoulos]	  
ü  Lunar	  Laser	  Ranging	  
ü  Binary	  pulsars	  -‐	  new	  binary	  pulsar:	  ωBD>25,000	  [Freire++,	  1205.1450]	  

For	  light	  scalars	  we	  can	  assume	  small	  coupling	  
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We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is

generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the

black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of

superradiance, matter can hover into ‘‘floating orbits’’ for which the net gravitational energy loss at infinity

is entirely provided by the black hole’s rotational energy. Orbiting bodies remain floating until they extract

sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the

orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at

orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that

the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.
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I. Introduction.—Massive scalars are ubiquitous in phys-
ics. For example, light scalars spanning several orders of
magnitude in mass are predicted in string-theory scenarios
[1–3]. Massive scalars are observationally viable in scalar-
tensor generalizations of Einstein’s general relativity [4]
and can be regarded as an effective propagating degree of
freedom in fðRÞ theories [5,6]. In this Letter we consider
generic massive scalar fields coupled to matter in orbit
around a rotating black hole (BH).

Awell-known phenomenon in BH physics is the Penrose
process (for particles) and the associated superradiant am-
plification (for waves) [7,8]. Consider a Kerr BH of mass

M, angular momentum J ¼ aM, and horizon radius rþ ¼
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 ! a2

p
, so that the angular velocity of the horizon

!H ¼ a=2Mrþ (here and below we set G ¼ c ¼ 1). A
wave with frequency!<m!H incident on the BH (where
m is the azimuthal quantum number) is amplified in a
scattering process, the excess energy coming from the
BH’s rotational energy. Superradiance is responsible for
many interesting effects [9–16]. Here we explore the in-
teresting possibility that an object in orbit around a rotating
BH may excite superradiant modes to appreciable ampli-
tudes. As the object orbits around the BH it loses energy in
gravitational waves, slowly spiraling in, as shown experi-
mentally by the Hulse-Taylor binary pulsar. This follows
from energy balance: if the orbital energy of the particle is
Ep, and the total (gravitational plus scalar) energy flux is
_ET ¼ _Eg þ _Es, then

_Ep þ _Eg þ _Es ¼ 0: (1)

Usually _Eg þ _Es > 0, and therefore the orbit shrinks with
time. However, it is possible that, due to superradiance,
_Eg þ _Es ¼ 0. In this case _Ep ¼ 0, and the particle can

hover in a ‘‘floating orbit’’ [9,10]. Here we show that
floating orbits, for which the net gravitational energy loss
at infinity is entirely provided by the BH’s rotational
energy, can exist for a wide range of scalar-field masses.
Orbiting bodies will float until they extract sufficient an-
gular momentum from the BH or until disruptive (perhaps
nonlinear) effects stop the process. When the BH rotates
slowly the condition for superradiance at these resonances
is not met, but we show that resonances at small orbital
frequencies (corresponding to large positive scalar fluxes
going into the horizon) still exist, and that they cause the
object to inspiral faster.
IIA. Setup.—The process we consider is quite general. It

occurs in all theories of gravity with Kerr BHs as back-
ground solutions and a scalar field of mass @!s coupled to

FIG. 1 (color online). Pictorial description of floating orbits.
An orbiting body excites superradiant scalar modes close to the
BH horizon. Since the scalar field is massive, the flux at infinity
consists solely of gravitational radiation.
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Part	  3:	  massive	  bosonic	  fields	  and	  superradiant	  instabiliEes	  

Superradiance	  when	  ω <	  mΩH	  	  
	  
Any	  light	  scalar	  can	  trigger	  a	  	  
black	  hole	  bomb	  (“bosenova”)	  
[Yoshino+Kodama,	  1203.5070]	  
	  
Strongest	  instability:	  µsM∼1	  
[Dolan,	  0705.2880]	  
	  
For	  µs=1eV,	  M=Msun	  :	  µsM∼1010	  
Need	  light	  scalars	  (or	  primordial	  black	  holes!)	  

NegaEve	  scalar	  flux	  at	  the	  horizon	  close	  to	  superradiant	  resonances	  at 

2

ness we focus on source terms of the form

T =

∫

dτ̄
√

−ḡ(0)
mpδ

(4) (x−X(τ̄)) , (3)

corresponding to the trace of the stress-energy tensor of a
point particle with massmp, where ḡ(0) is the background
(Kerr) metric. In scalar-tensor theories, for example,
α =

√

8π/(2 + ωBD) (s− 1/2), where ωBD is the Brans-
Dicke (BD) parameter1 and s is an object-dependent
“sensitivity factor” [4, 19].
Weak-field gravitational radiation circularizes the or-

bit (see below for a proof in the present context), so we
consider equatorial circular orbits around a Kerr BH,
but most results apply to more general orbits. Using
the “adiabatic approximation” we assume that the ra-
diation reaction timescale is much longer than the or-
bital timescale, and compute the total energy flux ĖT

for geodesic orbits. For prograde orbits, energy, angular
momentum and frequency of a particle at r = r0 read

Ep =
a
√
M +

√
r0(r0 − 2M)

r3/40

√

2a
√
M +

√
r0(r0 − 3M)

mp , (4)

Lp =

√
M

(

r20 − 2a
√
Mr0 + a2

)

r3/40

√

2a
√
M +

√
r0(r0 − 3M)

mp , (5)

Ωp =

√
M

a
√
M + r3/20

. (6)

The four-velocity of the particle on a timelike geodesic
reads r20mpUα = ((r20 + a2)Q/∆+ a(Lp− aEp), 0, 0, Lp−
aEp + aQ/∆), where ∆ = r2 − 2Mr + a2, Q = (r20 +
a2)Ep − aLp.
IIB. Wave emission. Because of the coupling to
matter, the orbiting object emits both gravitational and
scalar radiation. Gravitational radiation can be com-
puted using Teukolsky’s formalism [22]. The relevant
equations and their solution are presented by Detweiler
[23]. Here we focus on scalar wave emission. Defining

ϕ(t, r,Ωp) =
∑

l,m

∫

dωeimφ−iωtXlm(ω, r)√
r2 + a2

Slm(θ) , (7)

we get the non-homogeneous equation for the scalar field

[

d2

dr2∗
+ V

]

Xlmω(r) =
∆

(r2 + a2)3/2
Tlmω , (8)

1 Measurements of the Shapiro time delay require ωBD > 40, 000
for µs = 0 [20], but couplings of order ωBD ∼ O(1) are obser-
vationally allowed when µs ! 10−17 eV, and no bounds on ωBD

exist when µs ! 10−16 eV [21]. Considering a supermassive BH
of mass M ∼ 105M" and a typical sensitivity s ∼ 0.2, these
bounds translate into α " 8 · 10−3 when µs = 0, α " 0.9 when
µsM > 10−2 and no bounds on α when µsM > 0.1.

where dr/dr∗ = ∆/(r2 + a2),

Tlmω = −
α

U t
S∗
lm(π/2)δ(r − r0)mpδ(mΩp − ω) , (9)

and the effective potential for wave propagation V is
given (e.g.) in [19]. Let us consider two independent
solutions Xr+

lmω and X∞
lmω to the homogeneous equation

satisfying the following boundary conditions:

X∞,r+
lmω ∼ eik∞,Hr∗ as r → ∞, r+ ,

where kH = ω − mΩH and k∞ =
√

ω2 − µ2
s. Let W

be their Wronskian. The fluxes of scalar energy at the
horizon and at infinity are

Ės
r+,∞ = mΩpkH,∞|Zr+,∞

lmω |2 , (10)

Zr+,∞
lmω ≡ −α

X∞,r+
lmω (r0)

WU t

S∗
lm(π/2)

√

r20 + a2
mp/M . (11)

IIC. Analytic solution at low frequencies. The
scalar flux at infinity can be computed in the low-
frequency regime [25]. For r0/M ' 1 and l = m = 1,

Ės
∞ =

α2M2

12π

(

1− µ2
sr

3
0/M

)3/2

r40
m2

pΘ(Ωp − µs) , (12)

where Θ(x) is the Heaviside function. For generic modes,
at large distances and for ω = mΩp > µs, scalar ra-
diation dominates over gravitational radiation: compare
Eq. (12) with the standard quadrupole formula Ėg

∞ =
32/5 (r0/M)−5 m2

p/M
2. This result is oblivious to the

presence of the rotating BH. In fact, for ω > µs, the
fluxes at the horizon are negligible. However, for fre-
quencies close to µs, a resonance occurs at [24]:

ω2
res = µ2

s − µ2
s

(

µsM

l + 1 + n

)2

, n = 0, 1, ... (13)

From Eq. (10) we see that Ės
r+ < 0 in the superradiant

regime (kH < 0). Close to resonance we get (cf. also [24])

X∞
lmω ∼ rl+1e−µ2

sMr/(l+1+n) . (14)

We have verified this result numerically, finding very
good agreement with the analytical prediction. For the
fundamental mode n = 0, at resonance, we find:

W ∼ i
√

r2+ + a2(r+ − r−)
l+iP Γ[l + 1]Γ[l+ 1− 2iP ]

Γ[2l + 1]Γ[1− 2iP ]
,

where P = −2Mr+kH/(r+ − r−). Finally we can esti-
mate the peak flux close to the resonant frequencies. At
large distances and for l = m = 1, n = 0 we find

Ės,peak
r+ ∼ −

3α2
√

r0
Mm2

pM

16πr+ (M2 − a2)
(

a
2r+

− (Mr0 )
3/2

)

F
, (15)

with F = 1 + 4P 2. Quite surprisingly the scalar flux at
the horizon grows in magnitude with r0 and it is negative,

[Detweiler	  1980] 
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µsM r0/M (resonance) (αmp/M)−2Ės, peak
r+ αcrit

10−1 4.33400288873563 −0.1828 1.1 · 10−1

10−2 21.4020987080510 −0.4881 1.6 · 10−3

10−3 99.9339974413005 −1.1588 2.3 · 10−5

TABLE I. Orbital radius at resonance and peak scalar flux for
n = 0, l = m = 1, a = 0.99M and several values of µsM " 1.
For comparison, a typical extreme mass ratio inspiral becomes
detectable by space-based interferometers at radii r0/M ∼

50 [(106M"/M)(fcut/10
−4 Hz)]−2/3, where fcut is the lower

cutoff for the sensitivity threshold of the interferometer. A
floating orbit occurs for α > αcrit. Notice that αcrit is well
below current observational bounds [21] for any µs.

due to superradiance, at sufficiently large distances (for

generic l, the peak flux would scale as Ės,peak
r+ ∝ r2l−3/2

0 ).
For very small a the peak flux at resonance is instead pos-
itive, and it can also be very large: for the Schwarzschild
geometry, 32πM4Ės,peak

r+ ∼ 3α2r20m
2
p.

III. Floating orbits. From the previous discussion it
follows that, for any µsM # 1, there exists a frequency
ωres ! µs for which the total flux Ės

∞ + Ės
r+ + Ėg

∞ +

Ėg
r+ = 0, because the negative scalar flux at the horizon

is (in modulus) large enough to compensate for the other
positive contributions. This expectation is confirmed by
a full numerical integration of Teukolsky’s equation: see
Fig. 2 and Table I. The width of the peak is proportional
to the imaginary part of the resonant mode ωI ∝ µ4l+5

s
[24]. For l = 1, more explicitly,

ωI = µs
(µsM)8

24
(a/M − 2µsr+) . (16)

As µs → 0 the imaginary part becomes tiny, and an accu-
rate fine-tuning is needed to numerically resolve the res-
onance. For example, to resolve the peak at r0 ∼ 100M ,
corresponding to µsM = 10−3, we tuned the location of
r0 to 25 decimal places. Computing the imaginary part of
the unstable modes when µs → 0 is also challenging, but
we were able to obtain stable results for the resonance
location and for the height of the peak. A fit to numer-
ical results for 10M ! r0 ! 100M (cf. Table I) yields

Ės, peak
r+ ∼ r0.510 , to be compared with Ės, peak

r+ ∼ r1/20 in
Eq. (15). Close to floating orbits

dEp

dt
∼ −(Ep − Ef )

dĖT

dEp

∣

∣

∣

∣

∣

Ep=Ef

, (17)

where Ef is the energy of the particle at the floating
orbit, and we used the balance condition (1). During in-
spiral, right before reaching the floating orbit, the time
needed for the particle to increase its binding energy from
|Ef |−ε to |Ef | diverges logarithmically. Therefore, float-
ing orbits are expected to last much longer than a typical
inspiral timescale, with a potentially striking observa-
tional signature in the gravitational-wave spectrum.
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p/M
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E l
m
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t) -(dE11/dt)

s
r+

(dE22/dt)
g
T

FIG. 2. Dominant fluxes of scalar and gravitational energy
(l = m = 1 and l = m = 2, respectively) for µsM = 10−2, α =
10−2 and a = 0.99M . The inset is a zoom around resonance.

In the adiabatic approximation, the mass and angular
momentum of the background spacetime are constant.
However, the negative energy flux at the horizon re-
duces the BH mass and angular momentum (δM < 0,
δJ < 0). In order to estimate how long a particle can
stay in a floating orbit we must go beyond the adiabatic
approximation. Under ideal conditions, floating would
stop only when the peak of the scalar flux at the hori-
zon is too small to compensate for the gravitational flux,
|Ėg| > |Ės

peak|. From the balance condition (1) we find
that δEp = 0, which, using Eq. (4), can be written as

δr0 =
δMr0

(

a2 + 3(2M − r0)r0 + 2a
√

r0/M(r0 − 3M)
)

M
(

3a2 − 8a
√
Mr0 + (6M − r0)r0

) ,

where we used the relation δM = ΩpδJ , valid for
circular orbits. Substituting the equation above into
Eq. (15) and approximating δM/δt ∼ Ės

r+ = −Ėg
∞ =

−32/5 (r0/M)−5 m2
p/M

2 at resonance, we obtain, for
l = m = 1 and in the limits µs → 0 and a ' 1/µs,

δĖs, peak
r+

δt
= −

12α2

5π

M

a2

(mp

M

)4
(

M

r0

)3

,

which is negative: BH mass loss decreases the height of
the peak on a timescale

Ės, peak
r+

δĖs, peak
r+ /δt

∼
5a

32

(

M

mp

)2
( r0
M

)7/2
,

which does not depend on the coupling constant α.
The delayed inspiral may have observational conse-

quences. In particular, notice that in the absence of
scalar fields the evolution of orbital frequency scales as

Ω̇GR/Ω
2
p ∼ 96/5(mp/M)(MΩp)

5/3 . (18)

Close to a floating orbit we find instead that

Ω̇floating/Ω
2
p ∼ 32(mp/M)2(MΩp)

7/3 . (19)
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We study the coupling of massive scalar fields to matter in orbit around rotating black holes.
It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspi-
ralling into the black hole. Instead, we show that the coupling of the field to matter leads to a
surprising effect: because of superradiance, matter can hover into “floating orbits” for which the
net gravitational energy loss at infinity is entirely provided by the black hole’s rotational energy.
Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole,
or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating
black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding
to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body “sinks”.
These effects could be a smoking gun of deviations from general relativity.

I. Introduction. Massive scalars are ubiquitous in
physics. For example, light scalars spanning several or-
ders of magnitude in mass are predicted in string-theory
scenarios [1–3]. Massive scalars are observationally vi-
able in scalar-tensor generalizations of Einstein’s general
relativity [4] and can be regarded as an effective propa-
gating degree of freedom in f(R) theories [5, 6]. In this
paper we consider generic massive scalar fields coupled
to matter in orbit around a rotating black hole (BH).

A well-known phenomenon in BH physics is the Pen-
rose process (for particles) and the associated superradi-
ant amplification (for waves) [7, 8]. Consider a Kerr BH
of mass M , angular momentum J = aM and horizon ra-
dius r+ = M +

√
M2 − a2, so that the angular velocity

of the horizon ΩH = a/2Mr+ (here and below we set
G = c = 1). A wave with frequency ω < mΩH incident
on the BH (wherem is the azimuthal quantum number) is
amplified in a scattering process, the excess energy com-
ing from the BH’s rotational energy. Superradiance is

FIG. 1. Pictorial description of floating orbits. An orbit-
ing body excites superradiant scalar modes close to the BH
horizon. Since the scalar field is massive, the flux at infinity
consists solely of gravitational radiation.

responsible for many interesting effects [9–16]. Here we
explore the interesting possibility that an object in or-
bit around a rotating BH may excite superradiant modes
to appreciable amplitudes. As the object orbits around
the BH it loses energy in gravitational waves, slowly spi-
ralling in, as shown experimentally by the Hulse-Taylor
binary pulsar. This follows from energy balance: if the
orbital energy of the particle is Ep, and the total (gravi-
tational plus scalar) energy flux is ĖT = Ėg + Ės, then

Ėp + Ėg + Ės = 0 . (1)

Usually Ėg + Ės > 0, and therefore the orbit shrinks
with time. However it is possible that, due to superradi-
ance, Ėg + Ės = 0. In this case Ėp = 0, and the particle
can hover in a “floating orbit” [9, 10]. Here we show that
floating orbits, for which the net gravitational energy loss
at infinity is entirely provided by the BH’s rotational en-
ergy, can exist for a wide range of scalar-field masses.
Orbiting bodies will float until they extract sufficient an-
gular momentum from the BH or until disruptive (per-
haps nonlinear) effects stop the process. When the BH
rotates slowly the condition for superradiance at these
resonances is not met, but we show that resonances at
small orbital frequencies (corresponding to large positive
scalar fluxes going into the horizon) still exist, and that
they cause the object to inspiral faster.

IIA. Setup. The process we consider is quite general.
It occurs in all theories of gravity with Kerr BHs as back-
ground solutions and a scalar field of mass !µs coupled to
matter (see e.g. [17, 18]). At first order in perturbation
theory, the field equations for the scalar field reduce to

[

!− µ2
s

]

ϕ = αT . (2)

Our main results will be to a large extent independent of
the source term on the right-hand side, but for concrete-
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vector fields around spinning BHs. Although Eq. (5) is
strictly valid only when ã ! 1 and Mµ ! 1, in the
case of massive scalar fields it provides estimates which
are in remarkable quantitative agreement with numeri-
cal results [12, 13] that do not rely on the slow-rotation
approximation nor on the Mµ ! 1 limit [28]. There-
fore it is reasonable to expect that, also in the case of
massive vector fields, extrapolations of Eq. (5) from the
slow-rotation limit should at least provide the correct or-
der of magnitude (and possibly a reliable quantitative
estimate) of the instability timescale.

Astrophysical bounds on the photon mass. Our re-
sults, together with reliable supermassive BH spin mea-
surements, can be used to impose stringent constraints on
the allowed mass range of massive vector fields. These
bounds follow from the requirement that astrophysical
spinning BHs should be stable, in the sense that the in-
stability timescale τ should be smaller than some obser-
vational threshold. For isolated BHs (which are the focus
of our work) we can take the observational threshold to
be the age of the Universe (τHubble = 1.38 × 1010 yrs).
However, for supermassive BHs we may worry about pos-
sible spin growth due to mergers with other BHs and/or
accretion. The most likely mechanism to produce fast-
spinning BHs is prolonged accretion [32]. Therefore, a
more conservative assumption to estimate the astrophys-
ical consequences of the instability is to compare the su-
perradiance timescale to the (minimum) timescale over
which accretion could spin up the BH. Thin-disk accre-
tion can increase the BH spin from ã = 0 to ã = 1 with
a corresponding mass increase by a factor

√
6 [33]. If we

conservatively assume that mass growth occurs via accre-
tion at the Eddington limit, so that the BH mass grows
exponentially with e-folding time given by the Salpeter
timescale τSalpeter = 4.5 × 107 yr, then the minimum
timescale for the BH spin to grow from ã = 0 to ã = 1
via thin-disk accretion is comparable to τSalpeter.

Brenneman et al. [34] have recently presented a list of
eight supermassive BH spin estimates. In order to quan-
tify the dependence of Proca field mass bounds on the
mass and spin of supermassive BHs, in Fig. 1 we show ex-
clusion regions in the “BH Regge plane” (cf. Fig. 3 of [2]).
To be more specific, we plot contours corresponding to
an instability timescale of the order of the Hubble time
(continuous lines) or the Salpeter time (dashed lines) for
four different masses of the Proca field: mv = 10−18 eV,
10−19 eV, 10−20 eV and 4 × 10−21 eV. The plot shows
that essentially any measurement of a nonzero BH spin
for supermassive BHs with 106M" ! M ! 109M" would
be sufficient to exclude a wide range of masses for mas-
sive vector fields. Data in Fig. 1 refer to polar modes
with S = −1 which, by Eq. (5), exhibit the strongest in-
stability. However, our results do not strongly depend on
the class of modes we consider, nor on the precise value
of the coefficient γS!. In the axial case, in which we de-
rived the instability timescale analytically, the bounds on
µ are typically one order of magnitude less stringent than
in the polar case.
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FIG. 1. Contour plots in the BH Regge plane [2] correspond-
ing to an instability timescale shorter than τHubble (continu-
ous lines) or τSalpeter (dashed lines) for different values of the
vector field mass mv = µ!. The experimental points (with
error bars) refer to the supermassive BHs listed in Table 2
of [34]; the rightmost point corresponds to the supermassive
BH in Fairall 9 [35]. Supermassive BHs lying above each of
these curves would be unstable on an observable timescale,
and therefore they exclude the corresponding range of Proca
field masses.

Thus, existing measurements of supermassive BH spins
rule out vector field masses in the whole range 4 ×
10−21 eV! mv ! 10−17 eV. The best bound comes
from Fairall 9 [35], for which the polar instability im-
plies a conservative bound (including measurement er-
rors) mv ! 10−20 eV when we compare the instability
timescale to the Salpeter time, and mv ! 4 × 10−21 eV
if we do not consider accretion. This result is of great
significance, since it is two/three orders of magnitude
more stringent than the current best bound on the pho-
ton mass, mγ < 10−18 eV [36]. If the largest known
supermassive BHs with M % 2 × 1010M" [37, 38] were
confirmed to have nonzero spin, we could get bounds as
low as mv ! 10−22 eV.
Conclusions. The results discussed here show that BHs
offer the exciting possibility to constrain particle physics
and to set stringent upper bounds on the mass of bosonic
fields. Our method can be generalized to other fields
and applied in other scenarios, such as the investiga-
tion of Kerr-Newman BHs, or TeV-scale inspired higher-
dimensional BHs. Finally, it seems mandatory to perform
numerical simulations which either treat linearized fields
in the background of the full Kerr geometry or evolve the
fields in the nonlinear regime. Numerical methods may
give us a better understanding of the nonlinear evolution
and of the end state of the instability.
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Generic extensions of the standard model predict the existence of ultralight bosonic degrees of
freedom. Several ongoing experiments are aimed at detecting these particles or constraining their
mass range. Here we show that massive vector fields around rotating black holes can give rise to a
strong superradiant instability which extracts angular momentum from the hole. The observation
of supermassive spinning black holes imposes limits on this mechanism. We show that current spin
measurements for supermassive black holes provide the tightest upper limits on the mass of the
photon, mv ! 10−20 eV, and that spin measurements for the largest known supermassive black
holes could further lower this bound by about two orders of magnitude. Our analysis relies on a
novel framework to study perturbations of slowly rotating Kerr black holes, which can be extended
to other spacetime metrics and to other theories.

PACS numbers: 04.40.Dg, 04.62.+v, 95.30.Sf

Introduction. The properties of the matter making up
our universe are mostly unknown. Strong evidence (e.g.
from galactic rotation curves and from gravitational lens-
ing) points to the existence of elusive massive, weakly
interacting matter as the most abundant element in our
universe. An interesting possibility is the existence of
ultralight bosonic degrees of freedom, such as those ap-
pearing in the “string axiverse” scenario [1, 2], or of mas-
sive hidden U(1) vector fields, which are also a generic
feature of extensions of the standard model [3–6].

Massive fields around rotating black holes (BHs) can
trigger a superradiant instability, sometimes termed
“black hole bomb” [7]. This instability is well understood
in the case of massive scalar fields [8–15]: it requires the
existence of negative energy states in a region around a
BH, called the ergoregion, and it is regulated by the di-
mensionless parameter Mµ (where from now on we set
G = c = 1), where M is the BH mass and ms = µ!
is the scalar field mass. The instability is most effective
when Mµ ∼ 1 for maximally spinning BHs. For a solar
mass BH and a field of mass ms ∼ 1 eV the parameter
Mµ ∼ 1010, and therefore in many cases of astrophysical
interest the instability timescale is larger than the age of
the universe. Superradiant instabilities strong enough to
be observationally relevant (Mµ ∼ 1) can occur either for
light primordial BHs which may have been produced in
the early universe[16–18] or for ultralight exotic particles
found in some extensions of the standard model [1, 2].
In the string axiverse scenario, massive scalar fields with
10−33 eV < ms < 10−18 eV may play a key role in cos-
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mological models. Superradiant instabilities may allow
us to probe the existence of such ultralight bosonic fields
by producing gaps in the mass-spin BH Regge spectrum
[1, 2], by modifying the inspiral dynamics of compact bi-
naries [15, 19, 20] or by inducing a “bosenova”, i.e. a
collapse of the axion cloud [21–23].

The curved spacetime dynamics of massive vector fields
is basically uncharted territory. While superradiant in-
stabilities are expected to occur also for massive vector
fields, investigations along these lines have been ham-
pered by our inability to fully understand the (massive
vector) Proca equation,

∇σF
σρ − µ2Aρ = 0 , (1)

where Aµ is the vector potential, Fµν = ∂µAν − ∂νAµ

is the field-strength and mv = µ! is the mass of the
vector field. Note that the Lorenz condition ∇µAµ = 0
is automatically satisfied for Proca fields, i.e. there is no
gauge freedom and the field Aµ propagates 2s + 1 = 3
degrees of freedom [24]. In a nutshell, the problem lies
in the fact that Eq. (1) does not seem to be separable in
the Kerr background.
Framework. The Proca perturbation problem in the
Kerr metric becomes tractable if we work in the slow-
rotation approximation. We consider a metric of the form

ds2 = −F (r)dt2+B(r)−1dr2+r2d2Ω−2"(r) sin2 ϑdϕdt ,

which describes the most general asymptotically flat,
slowly rotating spacetime in four dimensions. Here we
focus on the case of slowly rotating Kerr BHs, corre-
sponding to F (r) = B(r) = 1 − 2M/r and " = 2J/r,
where M and J = M2ã (0 < ã $ 1) are the mass and
the angular momentum of the BH, respectively, but our
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r± = M(1±
√
1− ã2) and M and J = M2ã are the mass

and the angular momentum of the BH, respectively. In
what follows, we shall expand the metric and all other
quantities of interest to second order in ã. The proce-
dure to separate the linearized perturbation equations to
first order in ã was first proposed by Kojima in the con-
text of stellar perturbations [26–28], but it can be gen-
eralized to any order in ã and to generic (scalar, vector,
tensor, etc.) perturbations of stationary and axisymmet-
ric spacetimes. The details of the procedure will appear
elsewhere [29]; here we only present the main results.
In the slow-rotation limit the perturbation equations,

expanded in spherical harmonics and Fourier trans-
formed in time, yield a coupled system of ODEs. In the
case of a spherically symmetric background, perturba-
tions with different harmonic indices (!, m), as well as
perturbations with opposite parity, are decoupled. In
a rotating, axially symmetric background, perturbations
with different values of the azimuthal number m are still
decoupled, but perturbations with different values of !
are not. However, in the limit of slow rotation there is a
Laporte-like “selection rule” [30]: at first order in ã, per-
turbations with a given value of ! are only coupled with
those with !±1 and opposite parity, similarly to the case
of rotating stars. At second order, perturbations with a
given value of ! are coupled with those with ! ± 2 and
same parity, and so on.
In general, the perturbation equations can always be

written in the following form:

0 = A! + ãmĀ! + ã2Â!

+ ã(Q!P̃!−1 +Q!+1P̃!+1)

+ ã2
[

Q!−1Q!Ă!−2 +Q!+2Q!+1Ă!+2

]

+O(ã3) , (2)

0 = P! + ãmP̄! + ã2P̂!

+ ã(Q!Ã!−1 +Q!+1Ã!+1)

+ ã2
[

Q!−1Q!P̆!−2 +Q!+2Q!+1P̆!+2

]

+O(ã3) , (3)

whereQ! =
√

!2−m2

4!2−1 and the coefficientsA! and P! (with

various superscripts) are linear combinations of axial and
polar perturbation variables, respectively.
The general method can be specialized to the Proca

equation (1). We expand the vector potential as [24]

δAµ(t, r, θ,ϕ) =
∑

!,m





0
0

u!
(4)S

!
a/Λ



+







u!
(1)Y

!/r

u!
(2)Y

!/(rf)

u!
(3)Y

!
a /Λ






,

where Λ = !(! + 1), f = ∆/(r2 + a2), Y !, Y !
a and S!

a
are various spherical harmonics [29] and u!

(i) (i = 1, 2, 3)

and u!
(4) are polar and axial perturbations, respectively.

By assuming a time dependence of the form e−iωt and
separating the angular variables, we find that Proca per-
turbations in the slow-rotation limit, up to second order,

are described by two sets of equations [29]:

DAΨ
!
A + VAΨ

!
A = 0 , (4)

DPΨ
!
P + VPΨ

!
P = 0 , (5)

where DA,P are second order differential operators, VA,P

are matrices, ΨA = (u!
(4), u

!±1
(2) , u

!±1
(3) , u

!±2
(4) ) and ΨP =

(u!
(2), u

!
(3), u

!±1
(4) , u

!±2
(2) , u

!±2
(3) ). The function u!

(1) can be ob-
tained from the Lorenz condition once the three dynam-
ical degrees of freedom are known [29]. When ã = 0,
the equations above reduce to Proca perturbations of
a Schwarzschild BH [24]. However, rotation introduces
mixing between perturbations of different parity and dif-
ferent multipolar indices.
Numerical Results. Once suitable boundary condi-
tions and a time dependence of the form eiωt are im-
posed, Eqs. (4)–(5) form an eigenvalue problem for the
complex frequency ω = ωR + iωI . Physically motivated
boundary conditions correspond to quasinormal modes
(perturbations having ingoing-wave boundary conditions
at the horizon and outgoing-wave conditions at null in-
finity [31]) and bound states (perturbations that are spa-
tially localized within the vicinity of the BH and de-
cay exponentially at null infinity). Here we focus on
bound modes, which are expected (based on a scalar
field analogy) to become superradiantly unstable for
ωR < mΩH [10], where ΩH = ã/(2r+). Our results show,
for the first time, that massive vector fields do indeed be-
come unstable when ωR < mΩH .
The bound state modes of the system (4)–(5) can be

found by standard numerical methods [29]. When Mµ !
0.1, our numerical results for the fundamental modes are
consistent with a hydrogenic spectrum, ωR ∼ µ and

MωI ∼ γS! (ãm− 2r+µ) (Mµ)4!+5+2S , (6)

where γS! is a coefficient that depends on ! and on the
“polarization” index S, with S = 0 for axial modes and
S = ±1 for two classes of polar modes [24]. When m > 0,
the imaginary part of the modes has a zero crossing when

ωR ∼ µ = mΩH ∼ m
ã

4M
+O(ã3) , (7)

which corresponds to the onset of the superradiant
regime. Note that, although the superradiant condi-
tion (7) appears as a first order effect, in fact ωM ∼ ã
at superradiance and, due to terms proportional to ãω in
the field equations, a second order expansion is needed
for a self-consistent study of the unstable regime [29].
We find that when µ < mΩH the modes are unstable
and τ = ω−1

I is the instability growth timescale. This is
analogous to the case of massive scalar fields [10], whose
instability timescale is also given by Eq. (6) with S = 0,
so that axial vector modes are very similar to massive
scalar modes.
In the axial case (S = 0) our numerical results are also

supported by an analytical formula, that can be found
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