Can quantum vacuum be the physical origin of Acceleration?

Alain Blanchard

Arnaud Dupays (LCAR), Brahim Lamine (LKB) Chania "Recent developments in Gravity", June 26, 2012

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

Acceleration from SNIa Hubble diagram

SNIa are bright objects that can be detected are large distances.

Up to $z \sim 2$ i.e. $t(z) \sim 3$ Gyr

SNIa are "standardizable".

▲冊♪ ▲屋♪ ▲屋♪

Acceleration from SNIa Hubble diagram

SNIa are bright objects that can be detected are large distances.

Up to $z \sim 2$ i.e. $t(z) \sim 3$ Gyr

SNIa are "standardizable".

A (2) > (2) > (2) >

Acceleration from SNIa Hubble diagram

SNIa are bright objects that can be detected are large distances.

```
Up to z \sim 2 i.e. t(z) \sim 3 Gyr
```

SNIa are "standardizable".

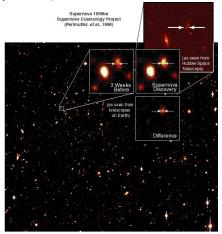
A (2) > (2) > (2) >

Distant SNIa

Just look for distant supernovae...

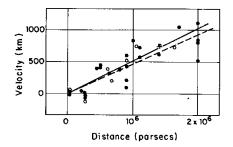
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Distant SNIa

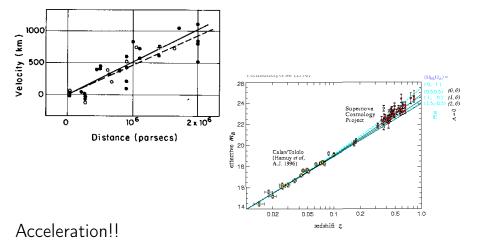

Just look for distant supernovae... One SNIa/galaxy/century

A (2) > (2) > (2) >

臣


Distant SNIa

Just look for distant supernovae... One SNIa/galaxy/century


Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

SNIa Hubble diagramm

토 > 토

SNIa Hubble diagramm

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Nobel Prize in Physics 2011

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

・ロト ・日本 ・モート ・モート

Nobel Prize in Physics 2011

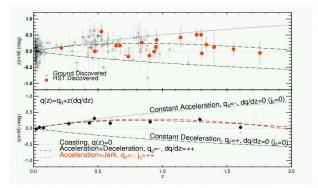
S.Perlmuter, A.Riess, B.Schmidt

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

・ロト ・日下・ ・日下

★国社

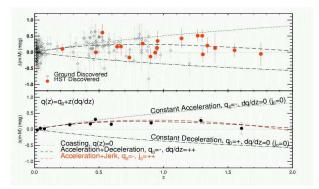
Distant SNIa Hubble diagramm


$$\ddot{R} \propto -(
ho_m(1+z)^3-2
ho_\Lambda)R$$

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

▲圖 → ▲ 国 → ▲ 国 →

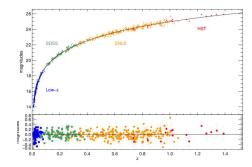
Distant SNIa Hubble diagramm


$$\ddot{R} \propto -(
ho_m(1+z)^3-2
ho_\Lambda)R$$

• 3 >

Distant SNIa Hubble diagramm

 $\ddot{R} \propto -(\rho_m (1+z)^3 - 2\rho_\Lambda)R$



 \rightarrow Acceleration+decceleration!!

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

< ∃ >

SNIa Hubble diagramm (2012)

SNLS

4 ∰ ▶ < ∃ ▶</p>

-

What if SNIa evolved ?

イロン イヨン イヨン イヨン

2

What if SNIa evolved ?

$$\Delta m(z) = K \left(\frac{t_0 - t(z)}{t_0 - t_1} \right)$$

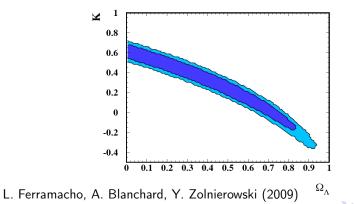
イロン イヨン イヨン イヨン

2

What if SNIa evolved ?

$$\Delta m(z) = K\left(\frac{t_0 - t(z)}{t_0 - t_1}\right)$$

Fit the Hubble diagramm with K and Λ

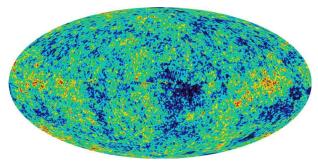

イロト イポト イヨト イヨト

臣

What if SNIa evolved ?

$$\Delta m(z) = K\left(\frac{t_0 - t(z)}{t_0 - t_1}\right)$$

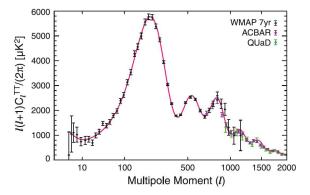
Fit the Hubble diagramm with K and Λ



Cosmic microwave radiation fluctuations

イロト イポト イヨト イヨト

3


Cosmic microwave radiation fluctuations

WMAP 1, 3, 5, 7,...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Cosmic microwave radiation fluctuations

3

Cosmic microwave radiation fluctuations

Essentially geometric:

 $z_{lss} pprox 1090$

Angular distance to the CMB is the key parameter, combined with the accoustic scale *r*₅ corresponding to the sound horizon at *ls*:

$$l_A = \frac{D_{ang}(z_{lss})}{r_S}$$

The shift parameter:

$$R = \sqrt{\Omega_m H_0^2} D_{ang}(z_{lss}) = 1.710 \pm 0.019$$

イボト イヨト イヨト

Cosmic microwave radiation fluctuations

Essentially geometric:

 $z_{lss} \approx 1090$

Angular distance to the CMB is the key parameter, combined with the accoustic scale r_S corresponding to the sound horizon at ls:

$$l_A = \frac{D_{ang}(z_{lss})}{r_S}$$

The shift parameter:

$$R=\sqrt{\Omega_mH_0^2D_{ang}(z_{lss})}=1.710\pm0.019$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

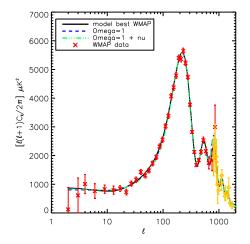
Cosmic microwave radiation fluctuations

Essentially geometric:

 $z_{lss} \approx 1090$

Angular distance to the CMB is the key parameter, combined with the accoustic scale r_S corresponding to the sound horizon at ls:

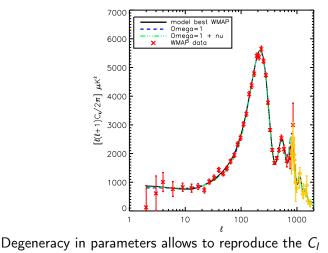
$$I_A = \frac{D_{ang}(z_{lss})}{r_S}$$


The shift parameter:

$$R = \sqrt{\Omega_m H_0^2} D_{ang}(z_{lss}) = 1.710 \pm 0.019$$

• • = • •

- E - N


Cosmic microwave radiation fluctuations

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣⇒

Cosmic microwave radiation fluctuations

Blanchard et al., 2003

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

3

Conlusion (at this point)

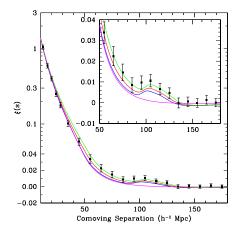
Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

イロト イヨト イヨト イヨト

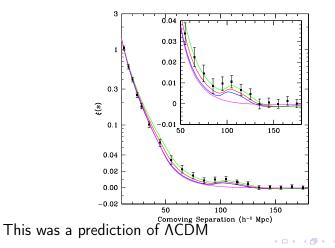
Conlusion (at this point)

Neither SNIa nor CMB strongly require acceleration!

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration


∃ >

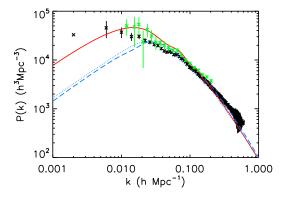
The sound horizon is also imprinted in the matter distribution:


イロト イヨト イヨト イヨト

The sound horizon is also imprinted in the matter distribution:

3

The sound horizon is also imprinted in the matter distribution:


Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

(Very) Positive point for ΛCDM

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

イロン イヨン イヨン イヨン

(Very) Positive point for ΛCDM

▲圖→ ▲ 国→ ▲ 国→

臣

Standard Cosmological model: ACDM

Parameters in ΛCDM

・日・ ・ヨ・ ・ヨ・

Standard Cosmological model: ACDM

Parameters in ΛCDM ...pretty well estimated

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

臣

Standard Cosmological model: ACDM

Parameters in ∧CDM

...pretty well estimated SNIa,

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Standard Cosmological model: ACDM

Parameters in ∧CDM

...pretty well estimated SNIa, CMB,

A (2) > (2) > (2) >

Standard Cosmological model: ACDM

Parameters in ACDM

...pretty well estimated SNIa, CMB, P(k)

A (2) > (2) > (2) >

э

Standard Cosmological model: ACDM

Parameters in ∧CDM

...pretty well estimated SNIa, CMB, P(k)

Parameter	Vanilla	Vanilla + Ω_k	Vanilla + w	Vanilla + Ω_k + w
$\Omega_b h^2$	0.0227 ± 0.0005	0.0227 ± 0.0006	0.0228 ± 0.0006	0.0227 ± 0.0005
$\Omega_c h^2$	0.112 ± 0.003	0.109 ± 0.005	0.109 ± 0.005	0.109 ± 0.005
θ	1.042 ± 0.003	1.042 ± 0.003	1.042 ± 0.003	1.042 ± 0.003
au	0.085 ± 0.017	0.088 ± 0.017	0.087 ± 0.017	0.088 ± 0.017
n_s	0.963 ± 0.012	0.964 ± 0.013	0.967 ± 0.014	0.964 ± 0.014
$log(10^{10}A_{s})$	3.07 ± 0.04	3.06 ± 0.04	3.06 ± 0.04	3.06 ± 0.04
Ω_k	0	-0.005 ± 0.007	0	-0.005 ± 0.0121
w	-1	-1	-0.965 ± 0.056	-1.003 ± 0.102
Ω_{Λ}	0.738 ± 0.015	0.735 ± 0.016	0.739 ± 0.014	0.733 ± 0.020
Age	13.7 ± 0.1	13.9 ± 0.4	13.7 ± 0.1	13.9 ± 0.6
Ω_m	0.262 ± 0.015	0.270 ± 0.019	0.261 ± 0.020	0.272 ± 0.029
σ_8	0.806 ± 0.023	0.791 ± 0.030	0.816 ± 0.014	0.788 ± 0.042
Zre	10.9 ± 1.4	11.0 ± 1.5	11.0 ± 1.5	11.0 ± 1.4
h	0.716 ± 0.014	0.699 ± 0.028	0.713 ± 0.015	0.698 ± 0.037

L. Ferramacho, A. Blanchard, Y. Zolnierowski (2009)

★週→ ★注→ ★注→

3

What does it mean?

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ ⊙

What does it mean?

COSMOLOGY MARCHES ON

イロト イヨト イヨト イヨト

æ

What does it mean?

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

э

What does it mean?

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

Observations need $P \approx -\rho$

э

What does it mean?

. . .

COSMOLOGY MARCHES ON

In GR, the source of gravity is ρ and P:

$$\ddot{R} \propto -(
ho + 3P)R$$

Observations need $P \thickapprox -\rho$ So that the gravity strength is repulsive and proportional to R

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (\rightarrow Kragh

arXiv:1111.4623)

(日本) (日本) (日本)

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (\rightarrow Kragh

arXiv:1111.4623) Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$p = -\rho$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Historical aspects

 $\boldsymbol{\Lambda}$ was introduced by Einstein

Nerst (1916) and Pauli discussed the possible contribution of zero-point energy to the density of the Universe (\rightarrow Kragh

arXiv:1111.4623) Lemaître (1934) made the comment that Λ is equivalent to a Lorentz invariant non-zero vacuum, i.e.

$$p = -\rho$$

So is this the origin of the acceleration ?

A (2) > (2) > (2) >

Historical aspects

No!

Alain Blanchard Can quantum vacuum be the physical origin of Acceleration

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

$$ho_{
m v} = \langle 0 | T^{00} | 0
angle = rac{1}{2(2\pi)^3} \int_0^{+\infty} k \, {
m d}^3 {f k}$$

highly divergent.

イボト イラト イラト

Historical aspects

No!

The Vacuum catastroph (Weinberg, 1989):

$$ho_{\mathbf{v}} = \langle 0 | T^{00} | 0
angle = rac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

highly divergent :

$$ho_{
m v}(k_c) \propto rac{k_c^4}{16\pi^2}$$

イボト イラト イラト

Equation of state

The pressure:

$$p_{v} = (\mathbf{1/3}) \sum_{i} \langle 0 | T^{ii} | 0
angle = rac{1}{3} rac{1}{2(2\pi)^{3}} \int_{0}^{+\infty} k \, \mathrm{d}^{3} \mathbf{k}$$

イロン イヨン イヨン イヨン

æ

Equation of state

The pressure:

$$p_{\nu} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Equation of state

The pressure:

$$p_{\nu} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^3} \int_0^{+\infty} k \, \mathrm{d}^3 \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$p = \frac{1}{3}\rho$$

< 回 > () >

Equation of state

The pressure:

$$p_{v} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^{3}} \int_{0}^{+\infty} k \, \mathrm{d}^{3} \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$p = \frac{1}{3}\rho$$

i.e. eq. (1) + eq. (2) leads to :

$$p_v = \rho_v = 0$$

< 回 > () >

Equation of state

The pressure:

$$p_{v} = (1/3) \sum_{i} \langle 0 | T^{ii} | 0 \rangle = \frac{1}{3} \frac{1}{2(2\pi)^{3}} \int_{0}^{+\infty} k \, \mathrm{d}^{3} \mathbf{k}$$

So that any regularization that is applied to both quantities leads to the e.o.s.:

$$p = \frac{1}{3}\rho$$

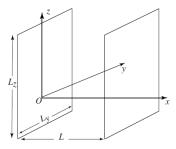
i.e. eq. (1) + eq. (2) leads to :

$$p_v = \rho_v = 0$$

 \rightarrow usual conclusion on zero-point energy contribution. (does not hold for a massive field cf J.Martin 2012)

< ∃ >

Casimir effect

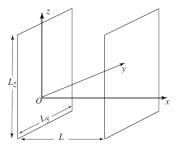

Where is there vacuum contribution in laboratory physics?

イロン イヨン イヨン イヨン

3

Casimir effect

Where is there vacuum contribution in laboratory physics?



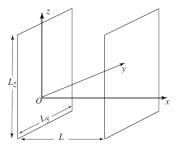
Casimir effect

イロト イポト イヨト イヨト

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect


with:

$$p_x = 3\rho$$

イロト イポト イヨト イヨト

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:

$$p_{x} = 3\rho < 0$$

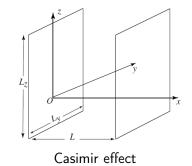
イロト イポト イヨト イヨト

Casimir effect

Where is there vacuum contribution in laboratory physics?

Casimir effect

with:


$$p_x = 3\rho < 0$$

and ...

イロト イポト イヨト イヨト

Casimir effect

Where is there vacuum contribution in laboratory physics?

with:

 $p_x = 3\rho < 0$

and ...

 $p_{//} = -\rho$ Brown & Maclay (1968)

Casimir effect from higher dimension

Assume there is an additional compact dimension.

▲圖 → ▲ 国 → ▲ 国 →

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983).

(周) (三) (三)

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983). This result can be established by evaluating zero mode contributions (Rohrlich 1984).

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983). This result can be established by evaluating zero mode contributions (Rohrlich 1984). Dispersion relation:

$$\omega^2 = k^2 + \frac{n^2}{R^2}$$

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to a Casimir energy (Appelquist & Chodos, 1983). This result can be established by evaluating zero mode contributions (Rohrlich 1984). Dispersion relation:

$$\omega^2 = k^2 + \frac{n^2}{R^2}$$

At high energy, only modes with λ smaller than ct have to be taken into account i.e.:

$$\rho_{v} = \frac{5\hbar c}{8\pi^{3}R} \int_{\omega > \omega_{H}}^{\infty} k^{2} \mathrm{d}k \left[\sum_{n = -\infty}^{\infty} \left(k^{2} + \frac{n^{2}}{R^{2}} \right)^{1/2} \right]$$
Alain Blanchard
Can quantum vacuum be the physical origin of Acc

leratio

Casimir effect: the horizon

At high energy, only modes with λ smaller than ct have to be taken into account i.e.:

$$\rho_{\mathbf{v}} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [\dots] - \frac{5\hbar c}{8\pi^3 R} \int_0^{\omega_H} k^2 \mathrm{d}k \, [\dots]$$

イロン イヨン イヨン イヨン

3

Casimir effect: the horizon

At high energy, only modes with λ smaller than ct have to be taken into account i.e.:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [\ldots] - \frac{5\hbar c}{8\pi^3 R} \int_0^{\omega_H} k^2 \mathrm{d}k \, [\ldots]$$

However, as long as $ct \ll 2\pi R$ vacuum should be that of a massless field in a 4+1D space time i.e.:

$$\rho_v = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Isotropy ends...

when $\omega_H \sim \frac{1}{R}$, this is the last time at which symetries ensure $\rho_{\rm v}=$ 0. Then

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] - \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...] = 0$$

・ロト ・回ト ・ヨト ・ヨト

Isotropy ends...

when $\omega_H \sim \frac{1}{R}$, this is the last time at which symetries ensure $\rho_v = 0$. Then

$$\rho_{\rm v} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] - \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...] = 0$$

Later, when $ct \gg 2\pi R$ i.e. $\omega_H \sim 0$

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^\infty k^2 \mathrm{d}k \, [...] = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^2 \mathrm{d}k \, [...]$$

with :

$$[\ldots] = \left[\sum_{n=-\infty}^{\infty} \left(k^2 + \frac{n^2}{R^2}\right)^{1/2}\right]$$

(同) (王) (王)

э

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

イロン イヨン イヨン イヨン

æ

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

In the brane:

$$\rho_{\rm v} = \frac{5\hbar c}{16\pi^2 R^4}$$

_ -

イロン イヨン イヨン イヨン

Isotropy ends...

The condition :

$$\omega = \sqrt{k^2 + \frac{n^2}{R^2}} < \frac{1}{R}$$

ensured only if n = 0, so:

$$\rho_{\nu} = \frac{5\hbar c}{8\pi^3 R} \int_0^{1/R} k^3 \mathrm{d}k = \frac{5\hbar c}{32\pi^3 R^5}$$

In the brane:

$$\rho_{\rm v} = \frac{5hc}{16\pi^2 R^4}$$

- 1

 $R\sim 25\mu{
m m}$ fits data. Corresponding to $E\sim 1\,{\it TeV}$

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

With $R \sim 25 \mu m$ it produces a cosmological constant as observed. \rightarrow gravitation is modified on scales $\leq 25 \mu m$

A (2) > (2) > (2) >

Conclusion

Casimir effect from quantized massless field in additional compact dimension can produce a non-zero vacuum contribution to the density of the universe with the correct equation of state for a cosmological constant.

With $R \sim 25 \mu m$ it produces a cosmological constant as observed. \rightarrow gravitation is modified on scales $\leq 25 \mu m$

Acceleration could be the direct manifestation of the quantum gravitational vacuum: w = -1

(日本) (日本) (日本)