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Gravitational waves from compact binaries

GRAVITATIONAL WAVES FROM COMPACT BINARIES
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Gravitational waves from compact binaries

The binary pulsar PSR 1913+16

The pulsar PSR 1913+16 is a rapidly rotating neutron star emitting radio
waves like a lighthouse toward the Earth.

This pulsar moves on a (quasi-)Keplerian close orbit around an unseen
companion, probably another neutron star
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Gravitational waves from compact binaries

The orbital decay of the binary pulsar [Taylor & Weisberg 1989]

Prediction from general relativity theory

Ṗ = −192π
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≈ −2.4× 10−12
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Gravitational waves from compact binaries

The inspiral and merger of compact binaries

Neutron stars spiral and coalesce Black holes spiral and coalesce

1 Neutron star (M = 1.4M�) events will be detected by ground-based
detectors LIGO/VIRGO/GEO

2 Stellar size black hole (5M� .M . 20M�) events will also be detected by
ground-based detectors

3 Supermassive black hole (105M� .M . 108M�) events will be detected
by the space-based detector LISA
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Gravitational waves from compact binaries

Supermassive black-hole coalescences as detected by LISA

When two galaxies collide their central supermassive black holes may form a
bound binary system which will spiral and coalesce. LISA will be able to detect the
gravitational waves emitted by such enormous events anywhere in the Universe

Luc Blanchet (GRεCO) Gravitational radiation from compact binaries Workshop GWA 7 / 38



Gravitational waves from compact binaries

Extreme mass ratio inspirals (EMRI) for LISA

A neutron star or a stellar black hole follows a highly relativistic orbit around
a supermassive black hole. The gravitational waves generated by the orbital
motion are computed using black hole perturbation theory

Observations of EMRIs will permit to test the no-hair theorem for black holes,
i.e. to verify that the central black hole is described by the Kerr geometry
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Post-Newtonian templates for binary inspiral

POST-NEWTONIAN TEMPLATES FOR BINARY INSPIRAL
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Post-Newtonian templates for binary inspiral

The two-body problem in General Relativity

Formation of a

bound system

to future null infinity

Gravitational waves propagating           

No−incoming radiation condition                     

at past null infinity                  

Two black holes on an hyperbolic−like orbit                       

Formation of a Kerr                  
black hole                         

V
4

Curved space−time

manifold

The solution of the two-body problem in
General Relativity would consist of a
space-time manifold describing

1 Two black holes on an initial
hyperbolic-like (scattering) orbit

2 The formation of a bounded binary
system by emission of gravitational
radiation

3 The long inspiral phase where the
black holes gradually come close to
each other

4 The detailed process of merger of
the two black hole horizons

5 The emission of quasi-normal mode
radiation by the final object untill
the formation of a stationary (Kerr)
black hole
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Post-Newtonian templates for binary inspiral

Methods to compute gravitational-wave templates
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Post-Newtonian templates for binary inspiral
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Post-Newtonian templates for binary inspiral

Methods to compute gravitational-wave templates
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Post-Newtonian templates for binary inspiral

PN methods applied to Inspiralling Compact Binaries
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The orbital phase φ(t) should be monitored in
LIGO/VIRGO with precision

δφ ∼ π

φ(t) = φ0 −
1

ν

(
GMω

c3

)−5/3

︸ ︷︷ ︸
result of the quadrupole formalism

(sufficient for the binary pulsar)

{
1 +

1PN

c2
+

1.5PN

c3
+ · · ·+ 3PN

c6
+ · · ·︸ ︷︷ ︸

needs to be computed with 3PN precision

}
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Post-Newtonian templates for binary inspiral

Short history of the PN approximation

Equations of motion

1PN equations of motion [Lorentz &

Droste 1917; Einstein, Infeld & Hoffmann 1938]

Radiation-reaction controvercy [Ehlers

et al 1979; Walker & Will 1982]

2.5PN equations of motion and GR
prediction for the binary pulsar
[Damour & Deruelle 1982, Damour 1983]

The 3mn Caltech paper [Cutler,

Flanagan, Poisson, Thorne 1993]

3.5PN equations of motion [Jaranowski

& Schäfer 1999; LB & Faye 2001; Andrade, LB

& Faye 2002; Itoh & Futamase 2003; Foffa &

Sturani 2010]

Ambiguity parameters resolved
[Damour, Jaranowski & Schäfer 2001; LB,

Damour & Esposito-Farèse 2003]

Radiation field

1918 Einstein quadrupole formula

1940 Landau-Lifchitz formula

1960 Peters-Mathews formula

Epstein-Wagoner-Thorne moments
[Thorne 1980]

1PN wave generation [Wagoner & Will

1976; LB & Schäfer 1989]

Blanchet-Damour moments [LB &

Damour 1989; LB 1995, 1998]

2PN wave generation [LB, Damour, Iyer,

Will & Wiseman 1995]

3.5PN wave generation [LB, Iyer &

Joguet 2002; LB, Faye, Iyer & Joguet 2003]

Ambiguity parameters resolved [LB,

Damour, Esposito-Farèse & Iyer 2004]
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Post-Newtonian templates for binary inspiral

Post-Newtonian equations of motion
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The equations of motion are written in
Newtonian-like form (with t = x0/c playing the
role of Newton’s “absolute time”)

dv1

dt
= AN

1 +
1

c2
A1PN

1 +
1

c4
A2PN

1 +
1

c5
A2.5PN

1︸ ︷︷ ︸
radiation reaction

+

very difficult term
to compute︷ ︸︸ ︷
1

c6
A3PN

1 +
1

c7
A3.5PN

1︸ ︷︷ ︸
radiation reaction

+O
(

1

c8

)

1 The EOM reduce in the test-mass limit to the geodesic equations of
Schwarzschild metric

2 They are derivable from a Lagrangian/Hamiltonian formalism (when the
gravitational radiation reaction is neglected)

3 They are invariant under a global Lorentz-Poincaré transformation
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Post-Newtonian templates for binary inspiral

Two equivalent PN wave generation formalisms

The field equations are integrated in the exterior of an extended PN source by
means of a multipolar expansion

BD multipole moments [LB & Damour 1989; LB 1995, 1998]

Mµν
L (t) = Finite Part

B=0

∫
d3xxL τ

µν(x, t)

WW multipole moments [Will & Wiseman 1996]

Wµν
L (t) =

∫
M

d3xxL τ
µν(x, t)

These formalisms solved the long-standing problem of divergencies in the PN
expansion for general extended sources
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Post-Newtonian templates for binary inspiral

The gravitational chirp of compact binaries

The waveform is obtained by matching a high-order post-Newtonian waveform
describing the long inspiralling phase and a highly accurate numerical waveform
describing the final merger and ringdown phases
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Post-Newtonian versus self-force predictions

POST-NEWTONIAN VERSUS SELF-FORCE PREDICTIONS
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Post-Newtonian versus self-force predictions

General problem of the self-force

A particle is moving on a background
space-time

Its own stress-energy tensor modifies the
background gravitational field

Because of the “back-reaction” the motion
of the particle deviates from a background
geodesic hence the appearance of a self force

m
1

m
2

f

u

 u


f

The self acceleration of the particle is proportional to its mass

Dūµ

dτ
= fµ = O

(
m1

m2

)
The gravitational self force includes both dissipative (radiation reaction) and
conservative effects.
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Post-Newtonian versus self-force predictions

Self-force in perturbation theory

The space-time metric gµν is decomposed as a background metric ḡµν plus

hµν = linearized parturbation of the background space-time

The field equation in an harmonic gauge reads

�hµν + 2Rµ ν
ρ σ h

ρσ = −16π Tµν

particle's trajectory

x

z

u









The retarded solution is

hµν(x) = 4m1

∫
Γ
G
ret

µν
ρσ(x, z) ūρ ūσ +O(m2

1)
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Post-Newtonian versus self-force predictions

Green function responsible for the self-force [Detweiler & Whiting 2003]

The symmetric Green function is defined by the prescription

G
S

=
1

2

[
G
ret

+ G
adv
−H

]
where H is homogeneous solution of the wave equation

GS is symmetric under a time reversal hence corresponds to stationary waves
at infinity and does not produce a reaction force on the particle

It has the same divergent behavior as Gret on the particle’s worldline

It is non zero only when x and z are related by a space-like interval

The radiative Green function responsible for the self force is

G
R

(x, z) = G
ret

(x, z)−G
S

(x, z) =
1

2

[
G
ret
− G

adv
+H

]
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Post-Newtonian versus self-force predictions

Computation of the self-force [Mino, Sasaki & Tanaka 1997; Quinn & Wald 1997]

1 The metric perturbation is decomposed as

hµν = h
S
µν + h

R
µν

where the particular solution hµνS (symmetric in a time reversal) diverges on
the particle’s location, but where the homogeneous solution hµνR is regular

2 The self-force fµ is computed from the geodesic motion with respect to

gSF
µν = ḡµν + h

R
µν

3 The divergence on the particle’s trajectory due to GS can be renormalized in
a redefinition of the particle’s mass

4 The result agrees with the MiSaTaQuWa expression of the self-force
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Post-Newtonian versus self-force predictions

Common regime of validity of SF and PN
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Post-Newtonian versus self-force predictions

Why and how comparing PN and SF predictions?

Both the PN and SF approaches use a self-field regularization for point particles
followed by a renormalization. However, the prescription are very different

1 SF theory is based on a prescription for the Green function GR that is at once
regular and causal [Detweiler & Whiting 2003]

2 PN theory uses dimensional regularization and it was shown that subtle issues
appear at the 3PN order due to the appearance of poles ∝ (d− 3)−1

How can we make a meaningful comparison?

1 To restrict attention to the conservative part of the dynamics

2 To find a gauge-invariant observable computable in both formalisms

Luc Blanchet (GRεCO) Gravitational radiation from compact binaries Workshop GWA 23 / 38



Post-Newtonian versus self-force predictions

Circular orbits admit a helical Killing vector

Light cylinder

Particle's trajectory

k k k
  

u


Black hole

1

1

space

space

time
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Post-Newtonian versus self-force predictions

Choice of a gauge-invariant observable [Detweiler 2008]

1 For exactly circular orbits the geometry admits a
helical Killing vector with

kµ∂µ = ∂t + Ω ∂ϕ (asymptotically)

2 The four-velocity of the particle is necessarily
tangent to the Killing vector hence

uµ1 = uT1 k
µ
1

3 The relation uT1 (Ω) is well-defined in both PN and
SF approaches and is gauge-invariant

u

k

black hole

R

particle

 

space
space

time
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Post-Newtonian versus self-force predictions

Post-Newtonian calculation

In a coordinate system such that kµ∂µ = ∂t + Ω ∂ϕ everywhere this invariant
quantity reduces to the zero component of the particle’s four-velocity,

ut1 =

(
− Reg1 [gµν ]︸ ︷︷ ︸

regularized metric

vµ1 v
ν
1

c2

)−1/2

v
1

y
1

y
2

r
12

v
2

One needs a self-field regularization

Hadamard regularization will yield an ambiguity at 3PN order

Dimensional regularization will be free of any ambiguity at 3PN order
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Post-Newtonian versus self-force predictions

High-order post-Newtonian result [LB, Detweiler, Le Tiec & Whiting 2010]

The result is expressed in terms of x =
(
GMΩ
c3

)3/2
as

uT = 1 +A0 x+A1 x
2 +A2 x

3 +

3PN︷ ︸︸ ︷
A3 x

4

+
[
A4 +B4 lnx

]
x5︸ ︷︷ ︸

4PN

+
[
A5 +B5 lnx

]
x6︸ ︷︷ ︸

5PN

+o(x6)

The coefficients depend on mass ratios ν = m1m2/M
2, ∆ = (m1 −m2)/M

A3 =
2835

256
+

2835

256
∆−

[
2183

48
− 41

64
π2

]
ν + other terms

B4 = −32

5
ν(1 + ∆) +

64

15
ν2

B5 =
478

105
ν(1 + ∆) + other terms
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Post-Newtonian versus self-force predictions

High-order PN prediction for the self-force

We re-expand in the small mass-ratio limit q = m1/m2 � 1 so that

uT = uTSchw + q uTSF︸ ︷︷ ︸
self-force

+ q2 uTPSF︸ ︷︷ ︸
post-self-force

+O(q3)

Posing y =
(
Gm2Ω
c3

)3/2
we find

uTSF = −y − 2y2 − 5y3 +

3PN︷ ︸︸ ︷(
−121

3
+

41

32
π2

)
y4

+

(
a4 +

64

5
ln y

)
y5︸ ︷︷ ︸

4PN

+

(
a5 −

956

105
ln y

)
y6︸ ︷︷ ︸

5PN

+o(y6)
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Post-Newtonian versus self-force predictions

High-order PN fit to the numerical self-force

Post-Newtonian coefficients are fitted up to 7PN order

PN coefficient SF value
a4 −114.34747(5)
a5 −245.53(1)
a6 −695(2)
b6 +339.3(5)
a7 −5837(16)

The 3PN prediction agrees with the SF value with 7 significant digits

3PN value SF fit

a3 = − 121
3 + 41

32π
2 = −27.6879026 · · · −27.6879034± 0.0000004
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Post-Newtonian versus self-force predictions

Comparison between PN and SF predictions
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First law of point mass binary systems

FIRST LAW OF POINT MASS BINARY SYSTEMS
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First law of point mass binary systems

Komar like integral for helical symmetric space-times

1 Space-time with helical Killing vector

kα = tµ + Ωφµ

2 The ADM mass and angular momentum are
given by surface integrals at infinity

M = − 1

8π
lim
r→∞

∮
Sr

∇µtν dSµν

J =
1

16π
lim
r→∞

∮
Sr

∇µφν dSµν

rα

nα

Sr

H

Σ

m,zA,κ

uα

Kα

Σr

rα

Using the Einstein field equations for a smooth matter distribution we get

M − 2ΩJ = 2

∫
Σ

(
Tαβ −

1

2
Tgαβ

)
nαkβ

√
γ d3x
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First law of point mass binary systems

First law of perfect fluid mechanics [Friedman, Uryū & Shibata 2002]

Compare two nearby solutions of the Einstein field equations with Killing vector
kµ, corresponding to slightly different matter configurations:

δM − ΩδJ = −
∫

Σ

∆
(
dΣµ T

µ
ν

)
kν +

1

2

∫
Σ

dΣµk
µ T ρσ∆gρσ

where ∆ denotes the Lagrangian variation of the matter fluid.

Generalized law of perfect fluid and black hole mechanics [Friedman, Uryū & Shibata 2002]

δM − ΩδJ =

∫
Σ

[
µ̄∆(dm) + T̄ ∆(dS) + wµ∆(dCµ)

]
+
∑
n

κn
8π

δAn

where dm is the conserved baryonic mass element, and where T = zT and
µ = z(h− Ts) are the redshifted temperature and chemical potential.
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First law of point mass binary systems

PN derivation of the first law [Le Tiec, LB & Whiting 2012]

1 The ADM mass M and angular momentum J of the circular-orbit binary are
computed through 3PN order augmented by 4PN and 5PN logarithmic
contributions

2 We explicitly check through 3PN + 4PN/5PNlog that they obey the relation

∂M

∂Ω
= Ω

∂J

∂Ω

used in computations of the binary evolution based on a sequence of
quasi-equilibrium configurations [Gourgoulhon et al 2002]

3 However we find that they are also related to Detweiler’s redshift observables
z1 = 1/uT1 and z2 = 1/uT2 by

∂M

∂m1
− Ω

∂J

∂m1
= z1

∂M

∂m2
− Ω

∂J

∂m2
= z2
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First law of point mass binary systems

First law of binary point particle mechanics [Le Tiec, LB & Whiting 2012]

These relations can be summarized in the first law of binary binary
point-particles (modelling binary black holes) mechanics

δM − Ω δJ = z1 δm1 + z2 δm2

The first law tells how the ADM quantities change when the individual
masses m1 and m2 of the particles vary (keeping the frequency Ω fixed)

An interesting consequence of the first law is the remarkably simple relation

M − 2ΩJ = m1z1 +m2z2

There is complete agreement with the generalized law of fluid and black hole
mechanics [Friedman, Uryū & Shibata 2002] and the Komar integral of the first law
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First law of point mass binary systems

Higher PN terms in the binary’s energy

The first law can be used to compute new PN coefficients in the binary’s binding
energy E = M −m1 −m2

E = −1

2
mν x

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

+

(
−3969

128
+ ν e4(ν) +

448

15
ν lnx

)
x4

+

(
−45927

512
+ ν e5(ν) +

[
−4988

35
− 6565ν

]
ν lnx

)
x5

+

(
−264627

1024
+ ν e6(ν) +ν eln

6 (ν) lnx

)
x6

}
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First law of point mass binary systems

Higher PN terms in the binary’s energy

The first law can be used to compute new PN coefficients in the binary’s binding
energy E = M −m1 −m2

E = −1

2
mν x

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

+

(
−3969

128
+153.8803 ν+

448

15
ν lnx

)
x4

+

(
−45927

512
−55.13 ν+

[
−4988

35
− 6565ν

]
ν lnx

)
x5

+

(
−264627

1024
+588. ν − 1144. ν lnx

)
x6 +O(ν2)

}
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First law of point mass binary systems

Conclusions

1 Compact binary star systems are the most important source for gravitational
wave detectors LIGO/VIRGO and LISA

2 Post-Newtonian theory has proved to be the appropriate tool for describing
the inspiral phase of compact binaries up to the ISCO

3 The 3.5PN templates should be sufficient for detection and analysis of
neutron star binary inspirals in LIGO/VIRGO

4 For massive BH binaries the PN templates should be matched to the results
of numerical relativity for the merger and ringdown phases

5 The PN approximation is now tested against different approaches such as the
SF and performs extremely well.

Luc Blanchet (GRεCO) Gravitational radiation from compact binaries Workshop GWA 38 / 38


	Gravitational waves from compact binaries
	Post-Newtonian templates for binary inspiral
	Post-Newtonian versus self-force predictions
	First law of point mass binary systems

