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Conceptual framework

Motivation

The uniformly accelerated systems related by the equivalence principle to
the homogeneous gravitational fields are the issues that are of fundamental
importance for the understanding of general relativity. A discussion of
accelerated systems is also essential to obtain a good understanding of
special relativity. In both contexts, a description of events and particle
motions from the point of view of an observer fixed in an accelerated
reference frame is of the main interest. While the coordinate
transformations from inertial to accelerated frames are widely studied in
the literature from different physical approaches, there is very little
discussion of transformations between accelerated frames although it is
evident that, conceptually, such transformations should play a central role
in the theory of accelerated frames. like as the Lorentz transformations do
for inertial frames. An additional feature which makes studying the
transformations between accelerated frames important is that, based on
fundamental physical principles, they should possess the group property
while for the transformations between inertial and accelerated frames, due
to the distinguished role of the former, the group property is not expected.
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Conceptual framework

Main principles

Group property.

Invariance of the interval:

ds2 = u(z)2dt2 −
(

u′(z)

g

)2

dz2 − dx2 − dy 2

u(z) ≈ 1 + gz for gz → 0

The equivalence principle underlines the form of the interval.
According to this principle, the metric in the accelerating coordinate
system is the same as that of a uniform and constant gravitational
field
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Conceptual framework

Previous works

The Lie group techniques have been applied to the problem of determining
transformations between accelerated frames in Bourgin (1936) and Hill
(1945). Both works were stimulated by Page’s ”New Relativity”(Page,
1936) who defined transformations between ”equivalent” accelerated
frames on a purely kinematic basis and particularized the case of uniform
acceleration.
Hsu and Hsu (1997), Hsu and Kleff (1998) derived transformations
between accelerated frames using a new approach of the limiting
4-dimensional symmetry. They claim that transformations obtained using
the conventional .gravitational approach based on the metric of static
homogeneous gravitational field cannot be smoothly connected to the
Lorentz transformations in the limit of zero accelerations since it involves
only one parameter, i.e., acceleration, and, hence, do not reduce to the
Lorentz transformation with a non-zero velocity in the limit of zero
acceleration.
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Outline of the method: Lie group technique

Group of transformations

One-parameter group of transformations between two accelerated frames
K (T ,X ,Y ,Z ,G ) and k(t, x , y , z , g):

g = h0(G ; a), t = h1(T ,Z ,X ,Y ,G ; a), z = h2(T ,Z ,X ,Y ,G ; a),

x = h3(T ,Z ,X ,Y ,G ; a), y = h4(T ,Z ,X ,Y ,G ; a)

where a is a group parameter.

Change of variables (t, z)→ (f1, f2):

f1 = p (sinhµ+ coshµ) , f2 = p (sinhµ− coshµ)

where

p =
u(z)

g
, µ = gt
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Outline of the method: Lie group technique

Condition of infinitesimal invariance

Infinitesimal transformations

g ≈ G + a χ(G ),

f1 ≈ F1 + a φ1(F1,F2,X ,Y ,G ), f2 ≈ F2 + a φ2(F1,F2,X ,Y ,G ),

x ≈ X + a ξ(F1,F2,X ,Y ,G ), y ≈ Y + a η(F1,F2,X ,Y ,G )

The infinitesimal operator (generator of the group)

X = φ1
∂

∂f1
+ φ2

∂

∂f2
+ ξ

∂

∂x
+ η

∂

∂y
+ χ

∂

∂g

Condition of invariance

ds2 = dS2 +a ∆, ds2 = dS2 ⇒ ∆ = 0 ⇒ determining equations

Group generators – solutions of determining equations
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Outline of the method: Lie group technique

Finite transformations

Finite transformations are recovered by exponentiating the infinitesimal
operator (generator of the group)

h = eXH

where h is a vector of variables {f1, f2, x , y , g}.
It is equivalent to solving the initial data problem (Lie equations with
initial conditions):

df1(a)

da
= φ1(f1(a), f2(a), x(a), y(a), g(a)),

df2(a)

da
= φ2(f1(a), f2(a), x(a), y(a), g(a)), ,

· · ·
dg(a)

da
= χ(g(a));

f1(0) = F1, f2(0) = F 2, x(0) = X , y(0) = Y , g(0) = G .
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Outline of the method: Lie group technique

Solutions of determining equations for group generators

φ1(F1,F2,X ,Y ,G ) = a0F1 + 2λ1X − 2λ0Y +
λ4

G
,

φ2(F1,F2,X ,Y ,G ) = −a0F2 − 2λ3X − 2λ2Y +
λ5

G
,

ξ(F1,F2,X ,Y ,G ) = λ1F2 − λ3F1 − a9Y +
a7

G
,

η(F1,F2,X ,Y ,G ) = −λ0F2 − λ2F1 + a9X +
a8

G
,

χ(G ) = G

where

λ0 =
a6 − a5

2
, λ1 =

a3 − a4

2
, λ2 = −a5 + a6

2
,

λ3 = −a3 + a4

2
, λ4 = a1 − a2, λ5 = a1 + a2.

and all ai , i = 1, 2, . . . , 9, are nondimensional constants.
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Outline of the method: Lie group technique

Multi-parameter groups

One-parameter groups are recovered by exponentiating the generator of
the group

h = eXH

Since the generator includes arbitrary parameters it may be equally
considered as defining a multi-parameter group of transformations. An
r -parameter Lie group of finite transformations is defined by

h = ea
∑r

α=1 kαXαH,

or equivalently by

h =
r∏

α=1

eσαXαH = eσ1X1eσ2X2 · · · eσrXr H

Chania, 23 June 2012



Outline of the method: Lie group technique

Lie algebras

For the transformations to form an r -parameter Lie group of
transformations the corresponding infinitesimal generators {Xα},
α = 1, 2, . . . , r , must form an r -dimensional Lie algebra which is a vector
space with an additional law of combination of elements (the commutator)

[Xα,Xβ] = XαXβ − XβXα (1)

with a property of closure with respect to commutation

[Xα,Xβ] = Cγ
αβXγ (2)

where Cγ
αβ are constants (structural constants). Having a set of

infinitesimal operators, which satisfy that property, one can construct the
corresponding r -parameter group of transformations as a composition of r
one-parameter groups generated by each of base operators Xα via
exponentiation or, what is the same, solution of the Lie equations.
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Results Two-dimensional (1+1) transformations

Two-dimensional (1+1) transformations

Specifications

1. The groups of transformations for which x = X and y = Y and
transformations of z and t do not involve the variables x and y are
considered.

2. The condition that the same event is a space-time origin of both
frames is imposed.

3. The transformations including transformations to an inertial frame
as a particular case (allowing nonsingular limit g → 0) are separated.

Conditions 1 and 2 can be imposed on infinitesimals which yields

φ1(F1,F2,G ) = a0F1 −
1 + a0

G
, φ2(F1,F2,G ) = −a0F2 +

1− a0

G
,

χ(G ) = G

Condition 3 can be used only after identifying finite transformations.
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Results Two-dimensional (1+1) transformations

One-parameter groups

Solving the Lie equations yields

g = Gea, f1 = F1ea0a +
e−a − ea0a

G
, f2 = F2e−a0a − e−a − e−a0a

G
.

where a is a group parameter and a0 is a real number. It is easily checked
that these transformations leave the interval invariant. To check whether
the transformations allow a nonsingular limit g → 0, a small parameter ε

ε =
g

G
, a = ln ε

is introduced and two first terms of expansions with respect to ε are
calculated. It appears that for any real a0 6= 0 the first terms of the
expansions for z and t contain singularities so that the one-parameter
group of transformations may include a transformation to an inertial frame
as a particular case (or, in other terms, the value of the group parameter
a = −∞ is eligible) only if a0 = 0.
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Results Two-dimensional (1+1) transformations

One-parameter group of two-dimensional (1+1)
transformations

µ = arccoth

1
g −

1
G + P cosh M

P sinh M

p =

√(
1

g
− 1

G

)2

+ P2 + 2

(
1

g
− 1

G

)
P cosh M

g = Gea

where

p =
u(z)

g
, µ = gt; P =

u(Z )

G
, M = GT

In the limit of g → 0, expanding the right-hand sides of the expressions up
to the order of ε = g/G yields the transformations to an inertial frame

t ′ = P sinh M, z ′ = − 1

G
+ P cosh M
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Results Two-dimensional (1+1) transformations

Two-parameter group

In terms of f1, f2, g

f1 = ebF1 +
e−a − eb

G
, f2 = e−bF2 +

e−b − e−a

G
, g = Gea

where (a, b) are the group parameters. The transformations satisfy the
group property with the addition law of composition for both group
parameters a and b.

In terms of z , t, g

µ = arccoth
G − g cosh b + gGP cosh (M + b)

g (− sinh b + GP sinh (M + b))
,

p =

√
1

g 2
+

1

G 2
+ P2 − 2 (gP cosh M + cosh b − GP cosh (M + b))

gG
,

g = Gea

p =
u(z)

g
, µ = gt; P =

u(Z )

G
, M = GT

Chania, 23 June 2012



Results Two-dimensional (1+1) transformations

Physical meaning of the parameter b

The physical meaning of the parameter b becomes clear when one
calculates the relative velocity of the space origins of the frames k and K
at the initial moment t = T = 0 when the origins of both frames coincide.
However, to do it the function u(z) is to be specified. The Møller metric
and Lass metric were considered.

u(z) = 1 + gz (Møller metric) u(z) = egz Lass metric

For both metrics, calculations give for the velocity V of the origin of k
measured by an observer at the origin of K the following

V = − tanh b
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Results Two-dimensional (1+1) transformations

Transformations in terms of V

µ = arccoth
G + γg (−1 + GP (cosh M − V sinh M))

γg (V + GP (−V cosh M + sinh M))
, γ =

1√
1− V 2

,

p =

√
1

g 2
+

1

G 2
+ P2 − 2γ

gG
+

(
−2P

G
+

2Pγ

g

)
cosh M − 2PV γ sinh M

g

where

p =
u(z)

g
, µ = gt; P =

u(Z )

G
, M = GT

Taking the limit of both small g and G yields the Lorentz
transformations

z =
Z − VT√

1− V 2
, t =

T − VZ√
1− V 2

Transformations to an inertial frame are obtained as a limit of g → 0 as

z ′ =
γ

G
(−1 + GP (cosh M − V sinh M))

t ′ =
γ

G
(V + GP (sinh M − V cosh M))
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Results
Three-dimensional (2+1) and four-dimensional(3+1)

transformations

Three-dimensional (2+1) and four-dimensional(3+1)
transformations

In the case of three-dimensional transformations, after satisfying the
requirement that transformations to an inertial frame were included as a
particular case, only a two-parameter group remains. The transformations
belonging to that group correspond to the situation when the direction of
the relative velocity of the frame space origins at the initial moment is not
along the z-axis. In the limit when both frames are inertial, the
transformations become the Lorentz boost in arbitrary direction.

In the case of four-dimensional transformations, also there remains only
a two-parameter group, and the corresponding transformations can be
reduced to the three-dimensional case by the coordinate change. Thus, the
two-parameter group of three-dimensional transformations may be
considered as a generalization of the Lorentz transformations to
accelerated frames in four dimensions.
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Applications: differential aging between accelerated twins

Applications: differential aging between accelerated twins

Both twins are accelerated but Alice moves with uniform constant
acceleration g and Bob (returning twin) changes his acceleration G several
times. Four steps:

1. G = G1 > g ; Bob’s velocity changes from 0 to V .

2. G = −G1; Bob’s velocity changes from V to 0.

3. G = −G1; Bob’s velocity changes from 0 to −V .

4. G = G2; Bob’s velocity changes from V to the Alice velocity and
Bob meets Alice
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Conclusions

Conclusions

The Lie group analysis is applied to determine groups of
transformations between accelerated systems. The analysis is based
on the equivalence principle according to which the metric in an
accelerated frame has the form of static homogeneous gravitational
field. Groups of transformations between accelerated frames are found
from the condition of invariance of the interval under the
transformations.

For two-dimensional (1+1) transformations, the general result of the
analysis is the two-parameter group of transformations which relate
accelerated frames with nonzero relative velocity of the space origins
at the initial moment. The transformations satisfy the desired
property of reducing to the Lorentz transformations when
accelerations of both frames vanish. and so may be considered as a
proper generalization of the Lorentz boost to accelerated frames.
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Conclusions

Conclusions

In this respect, an argument, that can be found in the literature, that
the transformations obtained using the ”gravitational approach”
based on the metric of static homogeneous gravitational field cannot
be smoothly connected to the Lorentz transformations in the limit of
zero accelerations due to the lack of a velocity parameter in the
metric, seems unfounded. The analysis of the present paper shows
that the velocity parameter does not need to appear in the metric in
order to take part in the transformations. It arises as an additional
group parameter in the transformations derived through the
multi-parameter group analysis.
The most general transformations between accelerated frames having
nonzero relative velocity at the initial moment are given by the
three-dimensional (2+1) transformations which represent a
generalization of the Lorentz transformations to accelerated frames
for the case when the initial relative velocity of the frames is not
along the direction of acceleration.
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