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In 1965 Penrose introduced the concept of a

trapped surface. He defined a trapped sur-

face to be a closed spacelike surface in space-

time, such that an infinitesimal virtual dis-

placement of the surface along either fam-

ily of future-directed null geodesic normals

to the surface leads to a pointwise decrease

of the area element. On the basis of this

concept, Penrose proved an incompleteness

theorem. In the light of subsequent work,

namely the uniqueness theorem of the maxi-

mal development of given initial data by Choquet-

Bruhat and Geroch, and the work of Ren-

dall on the characteristic initial value prob-

lem, the incompleteness theorem of Penrose

may be re-stated as follows:
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Let us be given regular characteristic initial

data on a complete null geodesic cone Co of

a point o. Let (M∗, g) be the maximal future

development of the data on Co. Suppose that

M∗ contains a trapped surface. Then (M∗, g)

is future null geodesically incomplete.
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Now, it is not a priori obvious that trapped

surfaces are evolutionary. That is, it is not

obvious whether trapped surfaces can form

in evolution starting from initial conditions

in which no such surfaces are present. What

is more important, the physically interesting

problem is the problem where the initial con-

ditions are arbitrarily far from already con-

taining trapped surfaces, and we are asked

to follow the long time evolution and show

that, under suitable circumstances, trapped

surfaces eventually form. Only an analysis

of the dynamics of gravitational collapse can

achieve this aim.
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John Wheeler, my teacher in physics, posed

to me the following problem back in 1968:

to establish the formation of black holes in

pure general relativity, by the focusing of in-

coming gravitational waves. It took me 40

years to solve this problem. The solution is

contained the monograph “The Formation

of Black Holes in General Relativity”. [Fortu-

nately, Wheeler soon gave me an easier prob-

lem to study and I was able to complete my

Ph.D. in 1971 at the age of 20, rather than

in 2008 at the age of 57.]
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I shall now state the simplest version of the

theorem on the formation of trapped surfaces

in pure general relativity which this mono-

graph establishes. This is the limiting ver-

sion, where we have an asymptotic charac-

teristic initial value problem with initial data

at past null infinity. Denoting by u the “ad-

vanced time”, it is assumed that the initial

data are trivial for u ≤ 0.
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Let k, l be positive constants, k > 1, l < 1.

Let us be given smooth asymptotic initial

data at past null infinity which is trivial for

advanced time u ≤ 0. Suppose that the in-

coming energy per unit solid angle in each

direction in the advanced time interval [0, δ]

is not less than k/8π. Then if δ is suitably

small, the maximal development of the data

contains a trapped surface S which is diffeo-

morphic to S2 and has area

Area(S) ≥ 4πl2
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We remark that by virtue of the scale invari-

ance of the vacuum Einstein equations, the

theorem holds with k, l, and δ, replaced by

ak, al, and aδ, respectively, for any positive

constant a.

The above theorem is obtained through a

theorem in which the initial data is given on a

complete future null geodesic cone Co. The

generators of the cone are parametrized by

an affine parameter s measured from the ver-

tex o and defined so that the corresponding

null geodesic vectorfield has projection T at

o along a fixed unit future-directed timelike

vector T at o. It is assumed that the initial

data are trivial for s ≤ r0, for some r0 > 1.

The boundary of this trivial region is then a

round sphere of radius r0.
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The advanced time u is then defined along

Co by

u = s− r0 (1)

The formation of trapped surfaces theorem

is similar in this case, the only difference be-

ing that the “incoming energy per unit solid

angle in each direction in the advanced time

interval [0, δ]”, a notion defined only at past

null infinity, is replaced by the integral

r20
8π

∫ δ
0
edu (2)

on the affine parameter segment [r0, r0 + δ]

of each generator of Co.
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The function e is an invariant of the confor-

mal intrinsic geometry of Co, given by:

e =
1

2
|χ̂|2g/ (3)

where g/ is the induced metric on the sec-

tions of Co corresponding to constant values

of the affine parameter, and χ̂ is the shear

of these sections, the trace-free part of their

2nd fundamental form relative to Co.
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The theorem for a cone Co is established for

any r0 > 1 and the smallness condition on δ

is independent of r0. The domain of depen-

dence, in the maximal development, of the

trivial region in Co is a domain in Minkowski

spacetime bounded in the past by the trivial

part of Co and in the future by Ce, the past

null geodesic cone of a point e at arc length

2r0 along the timelike geodesic Γ0 from o

with tangent vector T at o. Considering then

the corresponding complete timelike geodesic

in Minkowski spacetime, fixing the origin on

this geodesic to be the point e, the limiting

form of the theorem is obtained by letting

r0 → ∞, keeping the origin fixed, so that o

tends to the infinite past along the timelike

geodesic.
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Almost all the work goes into establishing an

existence theorem for a development of the

initial data which extends far enough into the

future so that trapped spheres have eventu-

ally a chance to form within this develop-

ment. On the other hand, there is a wealth of

information in this existence theorem, which

gives us full knowledge of the geometry of

spacetime when trapped surfaces begin to

form.
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I shall now give a brief discussion of the math-

ematical methods employed. Three meth-

ods are used, two of which originated in my

work with Klainerman on the stability of the

Minkowski spacetime, and the third method,

which I call the short pulse method, was in-

troduced in the work which we are discussing.

I shall begin by summarizing the first two

methods.

The first method is peculiar to Einstein’s equa-

tions, while the second has wider applica-

tion, and can, in principle, be extended to

all Euler-Lagrange systems of partial differ-

ential equations of hyperbolic type.
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The first method is a way of looking at Ein-

stein’s equations which allows estimates for

the spacetime curvature to be obtained. In-

stead of considering the Einstein equations

themselves, we considered the Bianchi iden-

tities in the form which they assume by virtue

of the Einstein equations. We then intro-

duced the general concept of a Weyl field

W on a 4-dimensional Lorentzian manifold

(M, g) to be a 4-covariant tensorfield with

the algebraic properties of the Weyl or con-

formal curvature tensor. Given a Weyl field

W one can define a left dual ∗W as well as

a right dual W ∗, but as a consequence of the

algebraic properties of a Weyl field the two

duals coincide.
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Moreover, ∗W = W ∗ is also a Weyl field.

A Weyl field is subject to equations which

are analogues of Maxwell’s equations for the

electromagnetic field. These are linear equa-

tions, in general inhomogeneous, which we

call Bianchi equations. They are of the form:

∇αWαβγδ = Jβγδ (4)

the right hand side J, or more generally any

3-covariant tensorfield with the algebraic prop-

erties of the right hand side, we call a Weyl

current.
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These equations seem at first sight to be

the analogues of only half of Maxwell’s equa-

tions, but it turns out that they are equiva-

lent to the equations

∇[αWβγ]δϵ = ϵµαβγJ
∗µ
δϵ, J∗βγδ =

1

2
J
µν
β ϵµνγδ

(5)

which are analogues of the other half of Maxwell’s

equations. Here ϵ is the volume 4-form of

(M, g). The fundamental Weyl field is the

Riemann curvature tensor of (M, g), (M, g)

being a solution of the vacuum Einstein equa-

tions, and in this case the corresponding Weyl

current vanishes, the Bianchi equations re-

ducing to the Bianchi identities.
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Given a vectorfield Y and a Weyl field W

or Weyl current J there is a “variation” of

W and J with respect to Y , a modified Lie

derivative L̃YW , L̃Y J, which is also a Weyl

field or Weyl current respectively. The mod-

ified Lie derivative commutes with duality.

The Bianchi equations have certain confor-

mal covariance properies which imply the fol-

lowing. If J is the Weyl current associated

to the Weyl field W according to the Bianchi

equations, then the Weyl current associated

to L̃YW is the sum of L̃Y J and a bilinear ex-

pression which is on one hand linear in (Y )π̃

and its first covariant derivative and other

the other hand in W and its first covariant

derivative.
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Here we denote by (Y )π̃ the deformation ten-

sor of Y , namely the trace-free part of the

Lie derivative of the metric g with respect to

Y . This measures the rate of change of the

conformal geometry of (M, g) under the flow

generated by Y . From the fundamental Weyl

field, the Riemann curvature tensor of (M, g),

and a set of vector fields Y1, ..., Yn which we

call commutation fields, derived Weyl fields

of up to any given order m are generated

by the repeated application of the operators

L̃Yi : i = 1, ..., n.
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A basic requirement on the set of commuta-

tion fields is that it spans the tangent space

to M at each point. The Weyl currents asso-

ciated to these derived Weyl fields are then

determined by the deformation tensors of the

commutation fields.

Given a Weyl field W there is a 4-covariant

tensorfield Q(W ) associated to W , which is

symmetric and trace-free in any pair of in-

dices. It is a quadratic expression in W , anal-

ogous to the Maxwell energy-monentum-stress

tensor for the electromagnetic field.
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We call Q(W ) the Bel-Robinson tensor asso-

ciated to W , because it coincides with the

tensor discovered by Bel and Robinson in the

case of the fundamental Weyl field, the Rie-

mann curvature tensor of a solution of the

vacuum Einstein equations.

The Bel-Robinson tensor has a remarkable

positivity property:

Q(W )(X1, X2, X3, X4) is non-negative for any

tetrad X1, X2, X3, X4 of future directed non-

spacelike vectors at a point. Moreover, the

divergence of Q(W ) is a bilinear expression

which is linear in W and in the associated

Weyl current J.
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Given a Weyl field W and a triplet of future

directed non-spacelike vectorfields X1, X2, X3,

which we call multiplier fields we define the

energy-momentum density vectorfield

P (W ;X1, X2, X3) associated to W and to the

triplet X1, X2, X3 by:

P (W ;X1, X2, X3)
α = −Q(W )αβγδX

β
1X

γ
2X

δ
3

(6)

Then the divergence of P (W ;X1, X2, X3) is

the sum of

−(divQ(W ))(X1, X2, X3) and a bilinear expres-

sion which is linear in Q(W ) and in the de-

formation tensors of X1, X2, X3.
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The divergence theorem in spacetime, ap-

plied to a domain which is a development

of part of the initial hypersurface, then ex-

presses the integral of the 3-form dual to

P (W ;X1, X2, X3) on the future boundary of

this domain, in terms of the integral of the

same 3-form on the past boundary of the

domain, namely on the part of the initial hy-

persurface, and the spacetime integral of the

divergence. The boundaries being achronal -

that is, no pair of points on each boundary

can be joined by a timelike curve - the inte-

grals are integrals of non-negative functions,

by virtue of the positivity property of Q(W ).
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For the set of Weyl fields of order up to m

which are derived from the fundamental Weyl

field, the Riemann curvature tensor of (M, g),

the divergences are determined by the defor-

mation tensors of the commutation fields and

their derivatives up to order m, and by the

deformation tensors of the multiplier fields.

And the integrals on the future boundary give

control of all the derivatives of the curvature

up to order m. This is how estimates for

the spacetime curvature are obtained, once

a suitable set of multiplier fields and a suit-

able set of commutation fields have been pro-

vided.
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This is precisely where the second method

comes in. This method constructs the re-

quired sets of vectorfields by using the geom-

etry of the two parameter foliation of space-

time by the level sets of two functions. These

two functions, in the first realization of this

method, where the time function t, the level

sets of which are maximal spacelike hyper-

surfaces Ht of vanishing total linear momen-

tum, and the optical function u, which we

may think of as “retarded time”, the level

sets of which are outgoing null hypersurfaces

Cu. These where chosen so that density of

the foliation of each Ht by the traces of the

Cu, that is, by the surfaces of intersection

St,u = Ht
∩
Cu, which are diffeomorphic to

S2, tends to 1 as t→ ∞.
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It was clear that the two functions did not

enter the problem on equal footing. The

optical function u played a much more im-

portant role. This is due to the fact that

the problem involved outgoing waves reach-

ing future null infinity, and it is the outgoing

family of null hypersurfaces Cu which follow

these waves. The role of the family of maxi-

mal spacelike hypersurfaces Ht was to obtain

a suitable family of sections of each Cu, the

family St,u corresponding to a given u, and to

serve as a means by which, in the proof of the

existence theorem, the method of continuity

can be applied.
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The geometric entities describing the two pa-

rameter foliation of spacetime by the St,u are

estimated in terms of the spacetime curva-

ture. This yields estimates for the deforma-

tion tensors of the multiplier fields and the

commutation fields in terms of the space-

time curvature, thus connecting with the first

method.
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A variant of the second method is obtained

if we place in the role of the time function

t another optical function u, which we may

think of as “advanced time”, the level sets

of which are incoming null hypersurfaces. A

two parameter family of surfaces diffeomor-

phic to S2, the “wave fronts”, are then ob-

tained, namely the intersections of this in-

coming family with the outgoing family of

null hypersurfaces.
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In the work under discussion, the roles of the

two optical functions are reversed, because

we are considering incoming rather than out-

going waves, and it is the incoming null hy-

persurfaces Cu, the level sets of u, which fol-

low these waves. However, in this work, tak-

ing the other function to be the conjugate

optical function u is not merely a matter of

convenience, but it is essential for what we

wish to achieve. This is because the Cu, the

level sets of u, are here, like the initial hyper-

surface Co itself, future null geodesic cones

with vertices on the timelike geodesic Γ0, and

the trapped spheres which eventually form

are sections Su,u = Cu
∩
Cu of “late” Cu, ev-

erywhere along which those Cu have negative

expansion.

27



We now come to the short pulse method.

This method is a method of treating the fo-

cusing of incoming waves, and like the second

method it is of wider application. Its point of

departure resembles that of the short wave-

length or geometric optics approximation, in

so far as it depends on the presence of a small

length, but thereafter the two approaches di-

verge.
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The short pulse method is a method which,

in the context of Euler-Lagrange systems of

partial differential equations of hyperbolic type,

allows us to establish an existence theorem

for a development of the initial data which is

large enough so that interesting things have

a chance to occur within this development, if

a nonlinear system is involved. One may ask

at this point: what does it mean for a length

to be small in the context of the vacuum Ein-

stein equations? For, the equations are scale

invariant. Here small means by comparison

to the area radius of the trapped sphere to

be formed.
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With initial data on a complete future null

geodesic cone Co, as explained above, which

are trivial for s ≤ r0, we consider the restric-

tion of the initial data to s ≤ r0+ δ. In terms

of the advanced time u, we restrict attention

to the interval [0, δ], the data being trivial for

u ≤ 0. The retarded time u is set equal to

u0 = −r0 at o and therefore on Co, which is

then also denoted Cu0. Also, u−u0 is defined

along Γ0 to be one half the arc length from o.

This determines u everywhere. The develop-

ment whose existence we want to establish

is that bounded in the future by the space-

like hypersurface H−1 where u+ u = −1 and

by the incoming null hypersurface Cδ. We

denote this development M−1.
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We define L and L to be the future directed

null vectorfields the integral curves of which

are the generators of the Cu and Cu, parametrized

by u and u respectively, so that

Lu = Lu = 0, Lu = Lu = 1 (7)

The flow Φτ generated by L defines a diffeo-

morphism of Su,u onto Su+τ,u, while the flow

Φτ generated by L defines a diffeomorphism

of Su,u onto Su,u+τ .
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The positive function Ω defined by

g(L,L) = −2Ω2 (8)

may be thought of as the inverse density of

the double null foliation. We denote by L̂

and L̂ the corresponding normalized future

directed null vectorfields

L̂ = Ω−1L, L̂ = Ω−1L, so that g(L̂, L̂) = −2

(9)
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The first step is the analysis of the equations

along the initial hypersurface Cu0. The anal-

ysis is particularly clear and simple because

of the fact that Cu0 is a null hypersurface, so

we are dealing with the characteristic initial

value problem and there is a way of formulat-

ing the problem in terms of free data which

are not subject to any constraints. The full

set of data which includes all the curvature

components and their transversal derivatives,

up to any given order, along Cu0, is then de-

termined by integrating ordinary differential

equations along the generators of Cu0. We

show that the free data may be described

as a 2-covariant symmetric positive definite

tensor density m, of weight -1 and unit de-

terminant, on S2, depending on u.
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This is of the form:

m = expψ (10)

where ψ is a 2-dimensional symmetric trace-

free matrix valued “function” on S2, depend-

ing on u ∈ [0, δ], and transforming under change

of charts on S2 in such a way so as to make

m a 2-covariant tensor density of weight -1.

The transformation rule is particularly simple

if stereographic charts on S2 are used.
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Then there is a function O defined on the

intersection of the domains of the north and

south polar stereographic charts on S2, with

values in the 2-dimensional symmetric orthog-

onal matrices of determinant -1 such that

in going from the north polar chart to the

south polar chart or vise-versa, ψ 7→ ÕψO

and m 7→ ÕmO.
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The crucial ansatz of the short pulse method

is the following. We consider an arbitrary

smooth 2-dimensional symmetric trace-free

matrix valued “function” ψ0 on S2, depend-

ing on s ∈ [0,1], which extends smoothly by

0 to s ≤ 0, and we set:

ψ(u, ϑ) =
δ1/2

|u0|
ψ0

(
u

δ
, ϑ

)
, (u, ϑ) ∈ [0, δ]× S2

(11)
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The analysis of the equations along Cu0 then

gives, for the components of the spacetime

curvature along Cu0:

sup
Cu0

|α| ≤ O2(δ
−3/2|u0|−1)

sup
Cu0

|β| ≤ O2(δ
−1/2|u0|−2)

sup
Cu0

|ρ|, sup
Cu0

|σ| ≤ O3(|u0|−3)

sup
Cu0

|β| ≤ O4(δ|u0|−4)

sup
Cu0

|α| ≤ O5(δ
3/2|u0|−5) (12)
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Here α, α are the trace-free symmetric 2-covariant

tensorfields on each Su,u defined by:

α(X,Y ) = R(X, L̂, Y, L̂), α(X,Y ) = R(X, L̂, Y, L̂)

(13)

for any pair of vectors X,Y tangent to Su,u

at a point, β, β are the 1-forms on each Su,u

defined by:

β(X) =
1

2
R(X, L̂, L̂, L̂), β(X) =

1

2
R(X, L̂, L̂, L̂)

(14)
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and ρ, σ are the functions on each Su,u defined

by:

ρ =
1

4
R(L̂, L̂, L̂, L̂),

1

2
R(X,Y, L̂, L̂) = σϵ/(X,Y )

(15)

for any pair of vectors X,Y tangent to Su,u

at a point, ϵ/ being the area form of Su,u.

The symbol Ok(δ
p|u0|r) means the product

of δp|u0|r with a non-negative non-decreasing

continuous function of the Ck norm of ψ0 on

[0,1]×S2. The pointwise magnitudes of ten-

sors on Su,u are with respect to the induced

metric g/, which is positive definite, the sur-

faces being spacelike.
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One should focus on the dependence on δ of

the right hand sides of 12. This displays what

we may call the short pulse hierarchy. And

this hierarchy is nonlinear. For, if only the lin-

earized form of the equations was considered,

a different hierarchy would be obtained: the

exponents of δ in the first two of 12 would be

the same, but the exponents of δ in the last

three of 12 would instead be 1/2,3/2,5/2,

respectively.
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A question that immediately comes up when

one ponders the ansatz 11, is why is the

“amplitude” of the pulse proportional to the

square root of the “length” of the pulse?

(the factor |u0|−1 is the standard decay fac-

tor in 3 spatial dimensions, the square root of

the area of the wave fronts). Where does this

relationship come from? Obviously, there is

no such relationship in a linear theory.
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The answer is that it comes from our desire

to form trapped surfaces in the development

M−1. If a problem involving the focusing of

incoming waves in a different context was the

problem under study, for example the forma-

tion of electromagnetic shocks by the focus-

ing of incoming electromagnetic waves in a

nonlinear medium, the relationship between

length and amplitude would be dictated by

the desire to form such shocks within our

development.
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The short pulse hierarchy is the key to the

existence theorem as well as to the trapped

surface formation theorem. We must still

outline however in what way do we establish

that the short pulse hierarchy is preserved in

evolution. This is of course the main step of

the short pulse method. What we do is to

reconsider the first two methods previously

outlined in the light of the short pulse hier-

archy.
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Let us revisit the first method. We take

as multiplier fields the vectorfields L and K,

where

K = u2L (16)

As already mentioned above, we take the ini-

tial data to be trivial for u ≤ 0 and as a con-

sequence the spacetime region corresponding

to u ≤ 0 is a domain in Minkowski spacetime.

We may thus confine attention to the non-

trivial region u ≥ 0. We denote by M ′
−1 this

non-trivial region in M−1.
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For each of the Weyl fields to be specified be-

low, we define the energy-momentum density

vectorfields

(n)
P (W ) : n = 0,1,2,3 (17)

where:

(0)
P (W ) = P (W ;L,L, L)
(1)
P (W ) = P (W ;K,L,L)
(2)
P (W ) = P (W ;K,K,L)
(3)
P (W ) = P (W ;K,K,K) (18)

45



As commutation fields we take L, S, defined

by:

S = uL+ uL, (19)

and the three rotation fields Oi : i = 1,2,3.

The latter are defined according to the sec-

ond method as follows. In the Minkowskian

region we introduce rectangular coordinates

xµ : µ = 0,1,2,3, taking the x0 axis to be

the timelike geodesic Γ0. In the Minkowskian

region, in particular on the sphere S0,u0, the

Oi are the generators of rotations about the

xi : i = 1,2,3 spatial coordinate axes. The

Oi are then first defined on Cu0 by conjuga-

tion with the flow of L and then in spacetime

by conjugation with the flow of L.
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The Weyl fields which we consider are, be-

sides the fundamental Weyl field R, the Rie-

mann curvature tensor, the following derived

Weyl fields

1st order: L̃LR, L̃OiR : i = 1,2,3, L̃SR

2nd order: L̃LL̃LR, L̃OiL̃LR : i = 1,2,3,

L̃OjL̃OiR : i, j = 1,2,3,

L̃OiL̃SR : i = 1,2,3, L̃SL̃SR (20)
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We assign to each Weyl field the index l ac-

cording to the number of L̃L operators in the

definition of W in terms of R. We then define

total 2nd order energy-momentum densities

(n)
P 2 : n = 0,1,2,3 (21)

as the sum of δ2l
(n)
P (W ) over all the above

Weyl fields in the case n = 3, all the above

Weyl fields except those whose definition in-

volves the operator L̃S in the cases n = 0,1,2.
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We then define the total 2nd order energies
(n)
E 2 (u) as the integrals on the Cu and the

total 2nd order fluxes
(n)
F 2 (u) as the integrals

on the Cu, of the 3-forms dual to the
(n)
P 2.

Of the fluxes only
(3)
F 2 (u) plays a role in the

problem. Finally, with the exponents qn :

n = 0,1,2,3 defined by:

q0 = 1, q1 = 0, q2 = −
1

2
, q3 = −

3

2
, (22)
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according to the short pulse hierarchy, we de-

fine the quantities

(n)
E 2= sup

u

(
δ2qn

(n)
E 2 (u)

)
: n = 0,1,2,3,

(3)
F 2= sup

u

(
δ2q3

(3)
F 2 (u)

)
(23)

The objective then is to obtain bounds for

these quantities in terms of the initial data.

This requires properly estimating the defor-

mation tensor of K, as well as the deforma-

tions tensors of L, S and the Oi : i = 1,2,3

and their derivatives of up to 2nd order. In

doing this, the short pulse method meshes

with the second method previously described.
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The estimates of the error integrals, namely

the integrals of the absolute values of the

divergences of the
(n)
P 2, then yield inequali-

ties for the quantities 23. These inequalities

contain, besides the initial data terms

(n)
D= δ2qn

(n)
E 2 (u0) : n = 0,1,2,3, (24)

terms of O(δp) for some p > 0, which are in-

nocuous, as they can be made less than or

equal to 1 by subjecting δ to a suitable small-

ness condition, but they also contain terms

of O(1) which are nonlinear in the quantities

23.
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From such a nonlinear system of inequalities,

no bounds can in general be deduced, be-

cause here, in constrast with the work on

the stability of Minkowski spacetime, the ini-

tial data quantities are allowed to be arbitrar-

ily large. However a fortunate circumstance

occurs: our system of inequalities is reduc-

tive. That is, the inequalities, taken in proper

sequence, reduce to a sequence of sublinear

inequalities, thus allowing us to obtain the

sought for bounds.
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