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Kerr–Newman spacetimes

Figure: “Penrose diagram” of a subextremal Kerr–Newman spacetime
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where ∆ = r 2 − 2Mr + a2 + Q2, ρ2 = r 2 + a2 cos2 θ and 0 ≤ a2 + Q2 < M2.
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The stability problem for Kerr–Newman

• Uniqueness:

The Kerr/Kerr–Newman black holes are thought to be the unique
family of stationary black hole solutions of the Einstein
vacuum/electrovac equations.
Hawking, Carter, Robinson, Chrusciel–Costa,
Papapetrou, Alexakis–Ionescu–Klainerman, Yu, Wong

• Stability problem:

Show that perturbations of a subextremal Kerr–Newman metric
evolve via the Einstein equations into a member of the
Kerr–Newman family in the black hole exterior region.



Linear stability of Kerr–Newman spacetime

• Following philosophy of Christodoulou–Klainerman ’93,
“The global nonlinear stability of the Minkowski space”. Consider

�gψ = 0,

where ψ :M→ R and g = gM,a,Q is a Kerr–Newman metric.

• Prescribe sufficiently regular initial data on a suitable Cauchy
hypersurface Σ0.

• Prove quantitative decay of energy of ψ in a robust manner.



Previous work

• Carter ’68 – wave equation can be formally separated.

• Whiting ’89 – mode stability: no modes with finite initial energy
growing in time.

• Finster–Kamran–Smoller–Yau ’03 & ’06 – each mode
decays under assumption of smoothness and support away from
horizon.

• Without boundedness statement, one cannot make a statement
about superposition of modes.

• Apparently no such results for Kerr–Newman.

• Non-quantitative results don’t show clear dependence on data – this
is needed for nonlinear stability problem.

• Dafermos–Rodnianski ’09 & ’10: Boundedness for |a| � M
and essential elements of decay for Kerr |a| < M.

• Aretakis ’11: Extremal Kerr.

• Schlue ’11: Schwarzschild–de Sitter case.



Linear stability theorem for Kerr–Newman [D.C.]

Consider �gM,a,Qψ = 0 where ψ is supported only on modes of high
azimuthal frequency |m| > m0 or ψ is axisymmetric.

• Degenerate integrated local energy decay
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Difficulties

• Event horizon: Usual energy (that related to timelike Killing field
∂t) degenerates on horizon.

• Ergoregion: where Killing field ∂t is spacelike. Conserved energy is
not positive definite. For particles leads to Penrose process. For
waves, superradiance – energy flux to null infinity may be larger than
the initial energy.

• Trapped geodesics: There are null geodesics of constant r : they
neither cross the event horizon nor asymptote to null infinity. Energy
decay statement must degenerate on a complicated set.

• Strong coupling of superradiance and trapping in physical space.



Strategy

• Dafermos–Rodnianski ’08 – Use redshift to get nondegenerate
energy up to horizon.

• Carter ’68 – wave equation can be formally separated.

• Frequency localise – capture frequency specific phenomena.

• Dafermos–Rodnianski ’09 – Miraculous decoupling of trapping
and superradiance for Kerr family. D.C. – extend to Kerr–Newman.

• Prove frequency localised estimates.

• Return to physical space and control error terms

• Retrieve boundedness from integrated local energy decay.
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