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Kerr—Newman spacetimes

Figure: “Penrose diagram” of a subextremal Kerr—Newman spacetime
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The stability problem for Kerr—-Newman

e Uniqueness:

The Kerr/Kerr—Newman black holes are thought to be the unique
family of stationary black hole solutions of the Einstein
vacuum/electrovac equations.
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e Stability problem:

Show that perturbations of a subextremal Kerr—Newman metric
evolve via the Einstein equations into a member of the
Kerr—Newman family in the black hole exterior region.



Linear stability of Kerr—-Newman spacetime

e Following philosophy of CHRISTODOULOU-KLAINERMAN 93,
“The global nonlinear stability of the Minkowski space”. Consider

gy =0,

where 1 : M — R and g = gum,5,¢ is a Kerr—Newman metric.

e Prescribe sufficiently regular initial data on a suitable Cauchy
hypersurface .

e Prove quantitative decay of energy of ¥ in a robust manner.



Previous work

CARTER ’68 — wave equation can be formally separated.
WHITING '89 — mode stability: no modes with finite initial energy
growing in time.

FINSTER-KAMRAN-SMOLLER-YAU 03 & ’06 — each mode

decays under assumption of smoothness and support away from
horizon.

Without boundedness statement, one cannot make a statement
about superposition of modes.

Apparently no such results for Kerr—Newman.

Non-quantitative results don't show clear dependence on data — this
is needed for nonlinear stability problem.

DAFERMOS—RODNIANSKI 09 & ’10: Boundedness for |a| < M
and essential elements of decay for Kerr |a| < M.

ARETAKIS ’11: Extremal Kerr.
SCHLUE ’11: Schwarzschild—de Sitter case.



Linear stability theorem for Kerr—Newman [D.C.]
Consider Uy, , ,% = 0 where ) is supported only on modes of high

azimuthal frequency |m| > mg or v is axisymmetric.

e Degenerate integrated local energy decay
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e Boundedness of nondegenerate energy flux
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e Polynomial time decay of the energy flux

/z, oy® < Cr2 /Z [|a¢|2 + |a2¢|2]



Difficulties

Event horizon: Usual energy (that related to timelike Killing field
Ot) degenerates on horizon.

Ergoregion: where Killing field 0, is spacelike. Conserved energy is
not positive definite. For particles leads to Penrose process. For
waves, superradiance — energy flux to null infinity may be larger than
the initial energy.

Trapped geodesics: There are null geodesics of constant r: they
neither cross the event horizon nor asymptote to null infinity. Energy
decay statement must degenerate on a complicated set.

Strong coupling of superradiance and trapping in physical space.



Strategy

DAFERMOS—RODNIANSKI ‘08 — Use redshift to get nondegenerate
energy up to horizon.

CARTER ’68 — wave equation can be formally separated.
Frequency localise — capture frequency specific phenomena.

DAFERMOS—RODNIANSKI 09 — Miraculous decoupling of trapping
and superradiance for Kerr family. D.C. — extend to Kerr—Newman.

Prove frequency localised estimates.
Return to physical space and control error terms
Retrieve boundedness from integrated local energy decay.
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