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Figure 4. A comparison of the jet power normalisations found from radio (upper) and near-infrared (lower) with reported black hole spin measurements, from
reflection (left) and disc fits (right). Despite reportedly sampling the entire range of black hole spins there is clearly no dependence of jet power on these
reported values. The left-oriented arrows in the disc fits indicate the upper limit of≤ 0.8 reported for the spin of XTE J1550-564 based on disc measurements.
Note that in the near-IR jet power panels, XTE J1550-564 has two measurements, based on the different apparent jet power normalisations in the rise and
decay phases of an outburst; these are indicated by dotted circles (and are included to demonstrate the range of currently inexplicable apparent changes in jet
production efficiency). GRS 1915+105 has three reported spin measurements, which are all plotted, indicated by solid red circles.

softer X-ray states (see Fig 3 of Gallo, Fender & Pooley 2003 for
an illustration of this). The normalisations, c, are simply fitted as

log10 Lradio = c+ 0.6(log10 LX − 34)

This process can be repeated with near-infrared data, which
have been convincingly demonstrated to have a large contribution
from the jet (e.g. Homan et al. 2005; Russell et al. 2006). In Fig 3
we plot the equivalant ensemble of near-infrared data, and perform
the same analysis of normalisations. For XTE J1550-564 we plot
data both in the rise and decline phases of an outburst, which show
different normalisations – see Russell et al. 2007 and our discussion
later. Note also that the correlation in Russell et al. (2006) extends
to lower luminosities because it also utilizes optical data; however
those data are generally dominated by the irradiated accretion disc
and are not suitable for estimating the jet power.

For both the radio and infrared data sets, we include a ‘rep-
resentative’ measurement for the hard ‘plateau’ state of GRS
1915+105 (Fender & Belloni 2004). These measurements should
be interpreted with caution as this system – persistently very lu-
minous since entering outburst in 1992 – has not been observed to
enter a true canonical hard state. Nevertheless, the properties of the
source in this plateau state (which is probably a ‘hard intermedi-
ate’ state in the terminology of Belloni 2009), including a steady

powerful radio jet, are rather similar to those of the canonical hard
state.

We can now compare these measurements of the radio and
near-IR normalisations, as proxies for jet power, with the reported
measurements of black hole spin from reflection and disc mod-
elling. This is done in Fig 4, where for each normalisation mea-
surement we estimate a systematic uncertainty of 0.3 dex. There
is clearly no correlation in any of the four panels. Notably, for the
reflection fits, Cyg X-1 appears to have more or less average ra-
dio power despite a low reported spin. Equally, A 0620-00 has a
strong radio normalisation (admittedly based on a single measure-
ment), compared to a low reported spin from disc fits. Note that we
indicate (with solid red circles) all three of the other reported spin
measurements for GRS 1915+105. The lower panels also clearly il-
lustrate the large difference in relative jet power fitted to the source
XTE J1550-564 (indicated with dashed blue circles) when fitting
either the rise (lower measurement) or decay (upper measurement)
phases of an outburst.

It is important to note that while there are considerable uncer-
tainties in the absolute normalisation and form of the relation be-
twen radio luminosity and total jet power what we have measured
here is a fairly well-defined ranking. In this context it is important
to note that the source with the lowest reported spin, Cygnus X-1,

Fender, Gallo, Russell 2010
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at different radio frequencies ν for four of the five transient BHBs
in our sample. The radio light curves of these four systems were
monitored with good time resolution, allowing us to obtain rea-
sonably accurate estimates of the peak fluxes. The top left panel
shows data for two separate outbursts of GRS 1915+105 (the solid
and open circles correspond respectively to the outbursts studied
by Rodriguez et al. 1995 and Fender et al. 1999). The two lines are
fits to the respective data and have a slope of 0.59; writing the spec-
trum as Sν ∝ να, the fit corresponds to α = −0.41. The top right
panel combines the observations of Hjellming & Rupen (1995) and
Hannikainen et al. (2000) during an outburst of GRO J1655–40.
The best-fit line corresponds to α = −0.66.2 The lower two
panels show data for XTE J1550–564 (Hannikainen et al. 2009,
α = −0.18) and A0620–00 (Kuulkers et al. 1999). For the latter
source, we do not have enough data points to determine the slope;
the line in the plot corresponds to α = −0.4, the average spectral
index of the other three BHBs. In order to enable a fair comparison
of the different objects, we use the fitted lines in the four panels to
estimate the peak fluxes (Sν)max at a standard frequency of 5 GHz.
These 5-GHz peak flux values are listed in Table 1.

While each of the above four objects was densely observed
in radio during one or more transient outbursts, 4U 1543–47 was
unfortunately not monitored well at radio frequencies during any
of its several outbursts. The only radio data we know of when the
source was bright are those for the 2002 outburst summarized in
Park et al. (2004). The strongest radio flux was 0.022 Jy at 1.02675
GHz. Assuming α = −0.4, this gives a flux of 0.0116 Jy at 5 GHz
(or only 0.00043 Jy if one corrects for beaming with γjet = 2). We
list this result separately in Table 1 and plot it as a lower limit in
Figs 2 and 3 because of the sparse radio coverage. In addition, there
was an anomaly in the 2002 X-ray outburst of this source.

The anomalous behaviour of 4U 1543–47 is apparent by an
inspection of figs 4–9 in Remillard & McClintock (2006), which
summarize in detail the behaviour of six BH transients scrutinized
by RXTE. In panel b of these figures, which displays light curves
of the PCA model flux coded by X-ray state, one sees that only
4U 1543–47 failed to enter the SPL state (green triangles) near the
peak of its outburst, i.e. at the time of the radio coverage reported
by Park et al. Rather, it remained locked in the thermal state (red
crosses) after its rise out of the hard state. This behaviour contrasts
sharply with the behaviour of the other five transients which dis-
played the strongly-Comptonized SPL state during both the late
phase of their rise to maximum and during their early decay phase.
Thus, because of (1) the sparse radio coverage of 4U 1543–47, and
(2) the failure of the source to transition out of the jet-quenched
thermal state (Gallo et al. 2003) to the SPL state (which is closely
associated with the launching of ballistic jets), we treat the maxi-
mum observed flux of 0.022 Jy as a lower limit. Finally, in sharp
contrast to our finding, we note that figs 5 and 6 in Fender et al.
(2004) indicate a very high jet power for 4U 1543–47. We are un-
sure how they arrived at their result, but suspect it was based on
infrared data and their equipartition model (see Section 4). If so, an
extension of the present work to infrared data might be worthwhile.

To measure jet power, we scale the 5-GHz peak flux of each
BHB by the square of the distance to the source D. We also divide
by the BH mass M since we expect the power to be proportional
to M (this scaling is not important since the range of masses is

2 In the case of GRO J1655–40, the 22-GHz observations did not cover the
peak of the light curve. Hence this point is shown as a lower limit. Similarly,
in A0620–00, the peak was not observed at 0.962 and 1.14 GHz.

Figure 2. Plot of the jet power Pjet as estimated from the maximum radio
flux of ballistic jets (equation 1) vs the measured spin parameter of the BH
a∗ for the transient BHBs in our sample. Solid circles correspond to the first
four objects listed in Table 1, which have high quality radio data, and the
open circle corresponds to 4U 1543–47, which has only a lower limit on the
jet power. The dashed line corresponds to Pjet ∝ a2∗ , the theoretical scaling
derived by Blandford & Znajek (1977). The data suggest that ballistic jets
derive their power from the spin of the central BH.

only a factor ∼ 2). We thus obtain from the radio observations the
following quantity, which we treat as a proxy for the jet power:

Pjet ≡ D2(νSν)max,5GHz/M. (1)

It is hard to assess the uncertainty in the estimated values of Pjet.
There is some uncertainty in the values of D andM , but these are
not large. Potentially more serious, the radio flux may not track
jet power accurately. For instance, the properties of the ISM in the
vicinity of the BHB may play a role and are likely to vary from
one object to another. Also, the energy released in these roughly
Eddington-limited events will vary (e.g. see GRS 1915+105 in
Fig. 1). Below, we arbitrarily assume that the uncertainty in Pjet

is 0.3 in the log, i.e. a factor of 2 each way.

3 JET POWER VS BH SPIN

Fig. 2 shows jet power Pjet plotted against BH spin parameter a∗

for the five transient BHBs in our sample. The data are taken from
Table 1. The dashed line has a slope of 2, motivated by the theoreti-
cal scaling, Pjet ∝ a2

∗, derived by Blandford & Znajek (1977). The
data points agree remarkably well with this theoretical prediction.

Blandford & Znajek (1977) assumed a slowly spinning BH:
a∗ % 1. Tchekhovskoy et al. (2010) obtained a more accurate
theoretical scaling which works up to spins fairly close to unity:
Pjet ∝ Ω2

H , where ΩH is the angular frequency of the BH hori-
zon, ΩH = a∗(c

3/2GM)/(1 +
√

1− a2
∗). Fig. 3 shows a plot of

Pjet vs ΩH , with the dashed line corresponding to a slope of 2. The
agreement is again very good.
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uµF
µν = 0 (14)

which is equivalent to the statement that the electric field
vanishes in a frame comoving with the fluid.

3 THE SCHWARZSCHILD METRIC

Before addressing the general case of an accreting spinning
black hole, we will first consider the Schwarzschild metric
on the equatorial plane where

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2

= −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2

+r2dθ2 + r2dφ2 . (15)

Here, M is the mass of the black hole. The lapse function is
equal to α = (1 − 2M/r)1/2. ω = 0 and σµν = 0. Further-
more,

Uµ =
1
α
(1 , 0 , 0 , 0) , (16)

ai =
M
r2

(1 , 0 , 0) . (17)

On the equatorial plane, Br = Eθ = 0 due to symmetry,
and according to Eqs. (10) & (14),

Er = αr2vφBθ , Eθ = − 1
α
vφBr , (18)

with Br
,θ "= 0 and Eθ

,θ "= 0. The r-component of the last one
of Eqs. (12) now yields

(
1− 2M

r

)
(rvφ)2

r
− M

r2

− (rBθ)

4πρr

{
α2

[
r(rBθ)

]
,r
−Br

,θ

}[
1− (rvφ)2

]2

− (rBθ)2

4πρr

{
M
r

− α2(rvφ)2
[
1 +

r(rvφ),r
(rvφ)

]}[
1− (rvφ)2

]

= 0 . (19)

Eq. (19) is the generalization of the Newtonian radial force-
balance in Schwarzschild geometry. Given the distributions
of B̃ and ρ with r and θ in the disk, it yields the distribu-
tion of the disk azimuthal angular velocity vφ. Those distri-
butions can only be obtained through complex general rela-
tivistic magneto-hydrodynamic simulations. In this present
work, however, we are only interested in determining the po-
sition of the innermost accretion disk layer where the PRCB
is mostly active. We will thus address this problem analyti-
cally.

The vertical thickness h of the inner disk is a major
uncertain parameter since it depends on several physical
parameters (thermal pressure, radiation pressure from scat-
tered photons, magnetic pressure), and is the subject of on-
going investigation. According to Fig. 1, we can approximate
the value of the radial component of the magnetic field on
the upper surface of the inner disk, Br|+h, with the value
of the vertical component of the magnetic field on the disk
midplane. Note that Br = 0 on the disk midplane. In other
words,

Br|+h = −Br|−h ≈ −rBθ and Br
,θ ≈ r2Bθ

h
≡ λrBθ . (20)
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Figure 1. Sketch of innermost disk region where the large scale
dipolar magnetic field is generated by the PRCB. Solid/dashed
lines: outgoing/return field respectively. Dotted line: z-axis. The
PRCB layer is the innermost disk region of radial extent δ.

We have introduced here the parameter λ ≡ r/h. Fur-
thermore, according to Contopoulos & Kazanas (1998), the
dipole magnetic field originates in the innermost optically
thin disk layer of radial extent δ such that

δσT
ρ
mp

≈ 1 , (21)

in which photons coming from the central accretion disk
region penetrate. This is where the PR azimuthal electric
current is generated. Beyond that layer, the magnetic field
reverses polarity (see Fig. 1). Here σT is the Thompson cross
section of photons scattered by the inner disk plasma orbit-
ing electrons, and mp is the proton mass. Contopoulos &
Kazanas (1998) showed that, in order for the PRCB bat-
tery to operate secularly (i.e. continuously), thus generating
a large scale dipolar magnetic field interior to the disk in-
ner edge, the reverse polarity magnetic field needs to diffuse
outward through the accreting plasma. This occurs natu-
rally in a turbulent accretion disk with magnetic Prandtl
number Pm ! 1. We will here assume that

δ ∼ h , (22)

although this may be generalized. Therefore, in the PR layer,

(rBθ),r ≈ −rBθ

h
≡ −λBθ . (23)

Finally, in order to get rid of the radial derivative of vφ, we
will assume a Keplerian velocity profile, namely

(rvφ),r ≈ −vφ

2
. (24)

Under the above assumptions, eq. (19) becomes

(
1− 2M

r

)
(rvφ)2

r
− M

r2

+
v2
A(r)

r

{
(2λ− 1)

(
1− M

r

)

−(rvφ)2
(
2λ− 3

2
− 2M

r
(λ− 3

2
)
)}[

1− (rvφ)2
]
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= 0 , (25)

where, v2
A(r) ≡ (rBθ)2/4πρ.

In order to determine the position of the disk inner edge,
we will consider a virtual inward/outward displacement of
the innermost layer of material of radial and vertical thick-
ness δ ≈ h and h respectively, and study its stability. During
that displacement, mass conservation implies that

2πrδhρ = constant . (26)

In order to proceed, we need to make certain further as-
sumptions about how the various physical quantities in our
problem vary during the above displacement. Our first as-
sumption is that the angular momentum parallel to the sym-
metry axis per unit energy l is conserved, i.e. that

αvφ ≡ dφ
dt

= l
α2

r2
. (27)

Our second assumption is that of flux freezing during the
displacement. This implies that magnetic flux per unit mass
is also conserved, i.e.

rBθ

ρh
= constant. (28)

Our final assumption is that

λ ≡ r
h

= constant (29)

during the infinitesimal displacement. We see that under
these assumptions, v2

A varies inversely proportionally to r
during the displacement away from the position of equilib-
rium, namely

v2
A(r) ≈ v2

A
rISCO

r
, (30)

where v2
A ≡ v2

A(rISCO).
1

As we noted before, eq. (19) is the generalization of the
Newtonian radial force-balance, which can also be seen as
the zeroing of the first radial derivative of an effective po-
tential Veff . Therefore, in analogy to the Newtonian case,
the displacement stability of the innermost disk layer is de-
termined by the sign of the second radial derivative of Veff .
Marginal stability corresponds to zero second derivative of
Veff , i.e. to zero first derivative of eq. (19). When we substi-
tute eqs. (27) & (30) in eq. (25), the condition for marginal
stability, becomes

F(x, l̃;λ, v2
AxISCO) = 0 , and

∂
∂x

F(x, l̃;λ, v2
AxISCO) = 0 , (31)

where,

F(x, l̃;λ, v2
AxISCO) ≡

(
1− 2

x

)2 l̃2

x3
− 1

x2

+
v2
AxISCO

x2

{
(2λ− 1)

(
1− 1

x

)

− l̃2

x2
(1− 2

x
)
(
2λ− 3

2
− 2λ− 3

x

)}[
1− l̃2

x2
(1− 2

x
)

]
, (32)

1 Eq. (30) may be generalized as v2A(r) ≈ v2A(rISCO/r)κ.
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Figure 2. Dependence of xISCO ≡ r/M on the inner mag-
netic field strength for various black hole spin values a. At the
points the curves end they begin to turn up and backwards.
Top plot: thin disk (λ ≡ r/h = 10). Bottom plot: thick disk
(λ = 1). The various curves from top to bottom correspond to
α = 0, 0.2, 0.4, 0.6, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.95, 0.99, 0.999M
respectively.

and x ≡ r/M , l̃ ≡ l/M . Notice that in this approach we do
not need to derive an expression for Veff(r).

The position xISCO of the innermost marginally stable
circular orbit as a function of our parameters λ and v2

A is
obtained numerically by eliminating l̃ in the above system of
equations (see Fig. 2 for a = 0). For vA $ 1, the ISCO grad-
ually moves outward from its unmagnetized position 6M . In
other words, the magnetic field acts to destabilize the disk in-
ner edge, and the disk inner radius must be larger than 6M
for stability, in accordance with Lovelace et al. (1986). How-
ever, for higher values of vA an ISCO ceases to exist. We
conclude that, in the presence of a large scale dipolar mag-
netic field, the ISCO moves outward, and eventually disap-
pears as the field grows beyond a threshold value. In the case
of a thin disk (λ = 10), that threshold value corresponds
to vA ∼ 0.06. We will return to this important point in the
Discussion section.

4 THE KERR METRIC

The above can be directly generalized in the case of a spin-
ning black hole. In Boyer-Lindquist coordinates, the Kerr
metric reads:

ds2 = gttdt
2 + 2gtφdtdφ+ gttdr

2 + gθθdθ
2 + gφφdφ

2

c© 20012 RAS, MNRAS 000, 1–7
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= 0 , (25)

where, v2
A(r) ≡ (rBθ)2/4πρ.

In order to determine the position of the disk inner edge,
we will consider a virtual inward/outward displacement of
the innermost layer of material of radial and vertical thick-
ness δ ≈ h and h respectively, and study its stability. During
that displacement, mass conservation implies that

2πrδhρ = constant . (26)

In order to proceed, we need to make certain further as-
sumptions about how the various physical quantities in our
problem vary during the above displacement. Our first as-
sumption is that the angular momentum parallel to the sym-
metry axis per unit energy l is conserved, i.e. that

αvφ ≡ dφ
dt

= l
α2

r2
. (27)

Our second assumption is that of flux freezing during the
displacement. This implies that magnetic flux per unit mass
is also conserved, i.e.

rBθ

ρh
= constant. (28)

Our final assumption is that

λ ≡ r
h

= constant (29)

during the infinitesimal displacement. We see that under
these assumptions, v2

A varies inversely proportionally to r
during the displacement away from the position of equilib-
rium, namely

v2
A(r) ≈ v2

A
rISCO

r
, (30)

where v2
A ≡ v2

A(rISCO).
1

As we noted before, eq. (19) is the generalization of the
Newtonian radial force-balance, which can also be seen as
the zeroing of the first radial derivative of an effective po-
tential Veff . Therefore, in analogy to the Newtonian case,
the displacement stability of the innermost disk layer is de-
termined by the sign of the second radial derivative of Veff .
Marginal stability corresponds to zero second derivative of
Veff , i.e. to zero first derivative of eq. (19). When we substi-
tute eqs. (27) & (30) in eq. (25), the condition for marginal
stability, becomes

F(x, l̃;λ, v2
AxISCO) = 0 , and

∂
∂x

F(x, l̃;λ, v2
AxISCO) = 0 , (31)

where,

F(x, l̃;λ, v2
AxISCO) ≡

(
1− 2

x

)2 l̃2

x3
− 1

x2

+
v2
AxISCO

x2

{
(2λ− 1)

(
1− 1

x

)

− l̃2

x2
(1− 2

x
)
(
2λ− 3

2
− 2λ− 3

x

)}[
1− l̃2

x2
(1− 2

x
)

]
, (32)

1 Eq. (30) may be generalized as v2A(r) ≈ v2A(rISCO/r)κ.
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Figure 2. Dependence of xISCO ≡ r/M on the inner mag-
netic field strength for various black hole spin values a. At the
points the curves end they begin to turn up and backwards.
Top plot: thin disk (λ ≡ r/h = 10). Bottom plot: thick disk
(λ = 1). The various curves from top to bottom correspond to
α = 0, 0.2, 0.4, 0.6, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.95, 0.99, 0.999M
respectively.

and x ≡ r/M , l̃ ≡ l/M . Notice that in this approach we do
not need to derive an expression for Veff(r).

The position xISCO of the innermost marginally stable
circular orbit as a function of our parameters λ and v2

A is
obtained numerically by eliminating l̃ in the above system of
equations (see Fig. 2 for a = 0). For vA $ 1, the ISCO grad-
ually moves outward from its unmagnetized position 6M . In
other words, the magnetic field acts to destabilize the disk in-
ner edge, and the disk inner radius must be larger than 6M
for stability, in accordance with Lovelace et al. (1986). How-
ever, for higher values of vA an ISCO ceases to exist. We
conclude that, in the presence of a large scale dipolar mag-
netic field, the ISCO moves outward, and eventually disap-
pears as the field grows beyond a threshold value. In the case
of a thin disk (λ = 10), that threshold value corresponds
to vA ∼ 0.06. We will return to this important point in the
Discussion section.

4 THE KERR METRIC

The above can be directly generalized in the case of a spin-
ning black hole. In Boyer-Lindquist coordinates, the Kerr
metric reads:

ds2 = gttdt
2 + 2gtφdtdφ+ gttdr

2 + gθθdθ
2 + gφφdφ

2

c© 20012 RAS, MNRAS 000, 1–7

Contopoulos, Papadopoulos 2012

VA



Accumulated Magnetic Field

4 I. Contopoulos and D. B. Papadopoulos

= 0 , (25)

where, v2
A(r) ≡ (rBθ)2/4πρ.

In order to determine the position of the disk inner edge,
we will consider a virtual inward/outward displacement of
the innermost layer of material of radial and vertical thick-
ness δ ≈ h and h respectively, and study its stability. During
that displacement, mass conservation implies that

2πrδhρ = constant . (26)

In order to proceed, we need to make certain further as-
sumptions about how the various physical quantities in our
problem vary during the above displacement. Our first as-
sumption is that the angular momentum parallel to the sym-
metry axis per unit energy l is conserved, i.e. that

αvφ ≡ dφ
dt

= l
α2

r2
. (27)

Our second assumption is that of flux freezing during the
displacement. This implies that magnetic flux per unit mass
is also conserved, i.e.

rBθ

ρh
= constant. (28)

Our final assumption is that

λ ≡ r
h

= constant (29)

during the infinitesimal displacement. We see that under
these assumptions, v2

A varies inversely proportionally to r
during the displacement away from the position of equilib-
rium, namely

v2
A(r) ≈ v2

A
rISCO

r
, (30)

where v2
A ≡ v2

A(rISCO).
1

As we noted before, eq. (19) is the generalization of the
Newtonian radial force-balance, which can also be seen as
the zeroing of the first radial derivative of an effective po-
tential Veff . Therefore, in analogy to the Newtonian case,
the displacement stability of the innermost disk layer is de-
termined by the sign of the second radial derivative of Veff .
Marginal stability corresponds to zero second derivative of
Veff , i.e. to zero first derivative of eq. (19). When we substi-
tute eqs. (27) & (30) in eq. (25), the condition for marginal
stability, becomes

F(x, l̃;λ, v2
AxISCO) = 0 , and

∂
∂x

F(x, l̃;λ, v2
AxISCO) = 0 , (31)

where,

F(x, l̃;λ, v2
AxISCO) ≡

(
1− 2

x

)2 l̃2

x3
− 1

x2

+
v2
AxISCO

x2

{
(2λ− 1)

(
1− 1

x

)

− l̃2

x2
(1− 2

x
)
(
2λ− 3

2
− 2λ− 3

x

)}[
1− l̃2

x2
(1− 2

x
)

]
, (32)

1 Eq. (30) may be generalized as v2A(r) ≈ v2A(rISCO/r)κ.
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Figure 2. Dependence of xISCO ≡ r/M on the inner mag-
netic field strength for various black hole spin values a. At the
points the curves end they begin to turn up and backwards.
Top plot: thin disk (λ ≡ r/h = 10). Bottom plot: thick disk
(λ = 1). The various curves from top to bottom correspond to
α = 0, 0.2, 0.4, 0.6, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.95, 0.99, 0.999M
respectively.

and x ≡ r/M , l̃ ≡ l/M . Notice that in this approach we do
not need to derive an expression for Veff(r).

The position xISCO of the innermost marginally stable
circular orbit as a function of our parameters λ and v2

A is
obtained numerically by eliminating l̃ in the above system of
equations (see Fig. 2 for a = 0). For vA $ 1, the ISCO grad-
ually moves outward from its unmagnetized position 6M . In
other words, the magnetic field acts to destabilize the disk in-
ner edge, and the disk inner radius must be larger than 6M
for stability, in accordance with Lovelace et al. (1986). How-
ever, for higher values of vA an ISCO ceases to exist. We
conclude that, in the presence of a large scale dipolar mag-
netic field, the ISCO moves outward, and eventually disap-
pears as the field grows beyond a threshold value. In the case
of a thin disk (λ = 10), that threshold value corresponds
to vA ∼ 0.06. We will return to this important point in the
Discussion section.

4 THE KERR METRIC

The above can be directly generalized in the case of a spin-
ning black hole. In Boyer-Lindquist coordinates, the Kerr
metric reads:

ds2 = gttdt
2 + 2gtφdtdφ+ gttdr

2 + gθθdθ
2 + gφφdφ

2
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Figure 3. Range of xISCO values as a function of the black hole
spin parameter a for a thick disk r/h = 1. Dashed curve: unmag-
netized disk. Solid curve: maximally magnetized inner disk that
supports an ISCO. Shadded region: range of xISCO values when
0 ! vA ! vA|max. Diffuse cloud: range of xISCO values obtained
for the X-ray black hole binary LMC X-3 over a period of 25
years. Left vertical arrow: average spin parameter of unmagne-
tized disk. Right vertical arrow: spin parameter that yields the
observed range of xISCO values in the context of the PRCB.

the direct determination of the black hole spin through the
knowledge of xISCO alone.

The above are summarized in Fig. 3 where we show the
range of xISCO values as a function of a for a thick disk
(r/h = 1 at its inner edge). The dashed curve corresponds
to the unmagnetized disk (BPT72), whereas the solid curve
to a maximally magnetized disk that supports an ISCO. The
dashed-dotted curve corresponds to the maximum values of
xISCO reached as the inner field (vA) grows in a spinning
black hole with a >∼ 0.8M . In other words, according to
our simplified model of the inner disk, observations of xISCO

must lie in the shaded region. As an example, in the most
studied object, LMC X-3, estimates of xISCO range from
about 4 to about 6 (Steiner et al. 2010, assuming a canon-
ical value for the black hole mass equal to 7.5M!). If the
PRCB did not operate and the disk were unmagnetized,
these values would yield an average black hole spin value
a ∼ 0.3M (McClintock et al. 2011). It is natural, though, to
expect that the PRCB does operate as described above, and
that the various estimates of xISCO simply correspond to
the various stages of magnetic field growth that the source
is found to be in. As shown in Fig. 3, in this context, a more
natural value of the black hole spin in LMC X-3 would then
be a ∼ 0.6M .

Finally, the reader may wonder in what respect the
PRCB manifests itself in the inner disks structure differently
from flux advection from large distances. One way to differ-
entiate between the two is the radial width δ of the PRCB
layer over which Bθ changes significantly. In the PRCB and
a thin disk, our parameter r/δ ∼ λ is expected to be on
the order of 10. On the other hand, in the PRCB and a
thick disk, as well as in a disk where the magnetic field is
advected inward from large distance, λ is expected to be on

the order of unity. Another way to differentiate between the
two possibilities has to do with the particular cyclic disk
variability central to the PRCB, namely intervals of secular
field growth (hours, days) separated by intervals of strong
(msec) disk variability. Our present investigation on the role
of the PRCB in determining the structure of the inner disk
is certainly not exhaustive and will continue in the frame-
work of Program ARISTEIA of the General Secretariat for
Research and Technology of Greece.
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APPENDIX A:

Various expressions used throughout the paper are defined
below according to Thorne & Macdonald (1982):

∇̃ · Ã ≡ Aj
;j , (∇̃ × Ã)i ≡ εijkAk;j

DτA
β ≡ Aβ

;µU
µ − UβUµ;νA

µUν

Ã · B̃ ≡ AiBi , (Ã× B̃)i ≡ εijkAjBk , (Ã⊗ B̃)ij ≡ AiBj
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Figure 4. A comparison of the jet power normalisations found from radio (upper) and near-infrared (lower) with reported black hole spin measurements, from
reflection (left) and disc fits (right). Despite reportedly sampling the entire range of black hole spins there is clearly no dependence of jet power on these
reported values. The left-oriented arrows in the disc fits indicate the upper limit of≤ 0.8 reported for the spin of XTE J1550-564 based on disc measurements.
Note that in the near-IR jet power panels, XTE J1550-564 has two measurements, based on the different apparent jet power normalisations in the rise and
decay phases of an outburst; these are indicated by dotted circles (and are included to demonstrate the range of currently inexplicable apparent changes in jet
production efficiency). GRS 1915+105 has three reported spin measurements, which are all plotted, indicated by solid red circles.

softer X-ray states (see Fig 3 of Gallo, Fender & Pooley 2003 for
an illustration of this). The normalisations, c, are simply fitted as

log10 Lradio = c+ 0.6(log10 LX − 34)

This process can be repeated with near-infrared data, which
have been convincingly demonstrated to have a large contribution
from the jet (e.g. Homan et al. 2005; Russell et al. 2006). In Fig 3
we plot the equivalant ensemble of near-infrared data, and perform
the same analysis of normalisations. For XTE J1550-564 we plot
data both in the rise and decline phases of an outburst, which show
different normalisations – see Russell et al. 2007 and our discussion
later. Note also that the correlation in Russell et al. (2006) extends
to lower luminosities because it also utilizes optical data; however
those data are generally dominated by the irradiated accretion disc
and are not suitable for estimating the jet power.

For both the radio and infrared data sets, we include a ‘rep-
resentative’ measurement for the hard ‘plateau’ state of GRS
1915+105 (Fender & Belloni 2004). These measurements should
be interpreted with caution as this system – persistently very lu-
minous since entering outburst in 1992 – has not been observed to
enter a true canonical hard state. Nevertheless, the properties of the
source in this plateau state (which is probably a ‘hard intermedi-
ate’ state in the terminology of Belloni 2009), including a steady

powerful radio jet, are rather similar to those of the canonical hard
state.

We can now compare these measurements of the radio and
near-IR normalisations, as proxies for jet power, with the reported
measurements of black hole spin from reflection and disc mod-
elling. This is done in Fig 4, where for each normalisation mea-
surement we estimate a systematic uncertainty of 0.3 dex. There
is clearly no correlation in any of the four panels. Notably, for the
reflection fits, Cyg X-1 appears to have more or less average ra-
dio power despite a low reported spin. Equally, A 0620-00 has a
strong radio normalisation (admittedly based on a single measure-
ment), compared to a low reported spin from disc fits. Note that we
indicate (with solid red circles) all three of the other reported spin
measurements for GRS 1915+105. The lower panels also clearly il-
lustrate the large difference in relative jet power fitted to the source
XTE J1550-564 (indicated with dashed blue circles) when fitting
either the rise (lower measurement) or decay (upper measurement)
phases of an outburst.

It is important to note that while there are considerable uncer-
tainties in the absolute normalisation and form of the relation be-
twen radio luminosity and total jet power what we have measured
here is a fairly well-defined ranking. In this context it is important
to note that the source with the lowest reported spin, Cygnus X-1,


