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1. The nonlinear stability of Kerr problem
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The Schwarzschild and Kerr families

Recall the 2-parameter Kerr family of stationary, axisymmetric vacuum

(i.e. Ric = 0) spacetimes (M, gM,a) first discovered in 1963. The parameters are

called mass M and specific angular momentum a, i.e. angular momentum

per unit mass. The case a = 0 is known as Schwarzschild (1916). In local

coordinates:

gM,a = −
∆

ρ2
(dt − a sin2 θdφ)

2

+
ρ2

∆
dr2 + ρ2dθ2

+
sin2 θ

ρ2
(adt − (r2 + a2)dφ)

2

ρ2 = r2 +a2 cos2 θ, ∆ = r2 − 2Mr +a2 = (r − r−)(r− r+), ∣a∣ ≤M Ô⇒ 0 ≤ r− ≤ r+

∣a∣ <M subextremal black hole, ∣a∣ =M extremal black hole,

∣a∣ >M “naked singularity” case
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“Penrose diagram” for Kerr 0 < ∣a∣ <M
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Uniqueness of the Kerr family as stationary, black hole solutions

The Kerr black holes are thought to be the unique family of stationary, black

hole solutions of the Einstein vacuum equations.

Under the assumption of real analyticity, this has been shown putting

together work of Hawking, Carter, Robinson, Papapetrou (see also

recent improvements of Chruściel–Costa).

The assumption of analyticity is incompatible with causality. In recent work of

Ionescu–Klainerman, Alexakis–Ionescu–Klainerman, it has been

shown that there are no other smooth subextremal stationary vacuum black

holes solutions near the Kerr family.

This latter result is sufficient for our purposes here, as it means that it makes

sense to entertain the notion of asymptotic stability of the Kerr family.
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The nonlinear stability problem of Kerr

Perturbations of a (subextremal) Kerr metric should dynamically approach the

Kerr family in the exterior-to-the-black-hole region:

Conjecture (Stability of Kerr). Let (Σ, ḡ,K) be a vacuum initial data set

sufficiently close to the initial data on a Cauchy hypersurface in the Kerr

solution (M, gMi,ai
) for some subextremal parameters 0 ≤ ∣ai∣ <Mi. Then the

maximal Cauchy development (M, g) of the data under evolution by the

vacuum equations

Ric = 0

possesses a complete null infinity I+ such that the metric restricted to J−(I+)
approaches a Kerr solution (M, gMf ,af

) in a uniform way with quantitative

decay rates, where ∣af ∣ <Mf are near ai, Mi respectively.

Note: ai = 0 will not imply that af = 0!

Cf. non-linear stability of Minkowski space (Christodoulou–Klainerman).
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2. Construction of dynamical black holes from scattering

data: statement of the theorem
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Theorem (M.D., G. Holzegel, I. Rodnianski). Given suitable smooth

scattering “data” on the horizon H+ and future null infinity I+, asymptoting to

the induced Kerr geometry with parameters ∣a∣ ≤M , then there exists a

corresponding smooth vacuum black hole spacetime asymptotically approaching

in its exterior region the Kerr solution with parameters a and M .

Corollary. There exist black hole spacetimes with smooth horizon H+ and

complete null infinity I+ which are not exactly Schwarzschild or Kerr.
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Remarks on the statement

1. The set of solutions is parametrized by “a full set” of scattering data.

Thus, the class of solutions is “large” in this sense.

2. The assumptions of the theorem will require however that the scattering

data decay exponentially along H+, I+. This is in contrast to the expected

behaviour of the “generic” solution of the forward problem, where decay

along H+ and I+ is expected to be inverse polynomial.

3. Nonetheless, for reasons we shall see, the restriction to exponentially

decaying data along H+ and I+ is expected to be necessary for the type of

formulation as in the Theorem.
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3. Why the stability problem is hard
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The difficulties of the stability problem can be seen to enter at three levels:

3.1. The “poor man’s” linearisation: 2gψ = 0.

3.2. The equations of linearised gravity.

3.3 The nonlinear Einstein equations.
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3.1 The poor man’s linearisation: 2gψ = 0 on Kerr
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Classical work: Regge–Wheeler 1957, Carter 1968, Price 1972, Wald

1979, Whiting 1982, Kay–Wald 1986 (heuristic mode analysis,

boundedness for Schwarzschild)

M.D.–Rodnianski, Tataru–Tohaneanu, Andersson–Blue, Aretakis

(quantitative bounds for the global behaviour of solutions to the wave equation

on Kerr ∣a∣ ≤M)

See also related work with cosmological constant:

Λ > 0: M.D.–Rodnianski, Bony-Häfner, Melrose–Sa Barreto–Vasy,

Vasy, Zworski–Sa Barreto, Dyatlov, Schlue

Λ < 0: Holzegel, Holzegel–Smulevici
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Phenomena

1. Red-shift

2. Superradiance

3. Trapping

4. Phenomena 1.–3. are strongly coupled as ∣a∣→M .

In fact, the stability result breaks down exactly at ∣a∣ =M . (Aretakis).

5 Behaviour near I+
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The red-shift

The redshift is classically understood in the geometric optics approximation in

terms of signals sent and received by two observers A and B, respectively.

H
+

I
+

A

B

First discussed in the Schwarzschild setting by Oppenheimer–Snyder, 1939.

In fact, properly thought of, only depends on positivity of surface gravity.

The red-shift is a stability mechanism!

Extremal case a =M : The red-shift factor at the horizon vanishes.
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Superradiance

In Schwarzschild (a = 0), the Killing vector field ∂t is timelike in the exterior,

becoming null on the horizon. Thus there is a conserved (by Noether)

non-negative definite (by the timelike condition) energy. The only subtlety

is that this energy degenerates at the horizon.

In stationary perturbations of Schwarzschild, ∂t in general becomes spacelike

near the horizon. This happens in particular for Kerr for all 0 ≠ ∣a∣ ≤M . The

corresponding energy is conserved but does not have a sign. For particle

motion, this leads to the so-called Penrose process. For waves, this leads to the

phenomenon of superradiance (Zeldovich).

In particular, using the conservation law associated to ∂t one cannot prove a

priori boundedness, even away from the horizon.
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Trapping

On Schwarzschild, the “photon sphere” r = 3M has the property that it

contains null geodesics. These null geodesics thus neither escape to I+ nor to

the horizon H+.

In Kerr, the behaviour persists, but it is more complicated!

One can concentrate energy for arbitrarily large times near trapped null

geodesics. One has to capture this to prove dispersive results.

In particular, pointwise-in-time decay estimates for energy must lose derivatives

(Ralston).
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3.2 The equations of linearised gravity.
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When one linearises the Einstein equations around the trivial solution

Minkowski space, say in harmonic coordinates, then each linearised metric

component indeed satisfies

2gh
µν = 0. (1)

When one linearises however, around a nontrivial solution like Kerr, the

linearised system has highly non-trivial tensorial structure. This gives rise to

additional difficulties not present in (1).

1. No obvious Lagrangian structure, thus no a priori conserved non-negative

energy, even in Schwarzschild where ∂t is causal.

2. Not all degrees of freedom decay, for in particular, linearisation must see

nearby Kerr’s. What is the mechanism that keeps these bounded?
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3.3 The nonlinear Einstein equations
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The difficulties entering at the level of the nonlinearity include of course the

familiar difficulties which are already manifest in stability of Minkowski space

(Christodoulou–Klainerman).

1. Quadratic nonlinearities in derivatives of the metric, plus quasilinearity.

Need special structure to ensure even local existence at I+.

2. To uncover this structure, need to introduce an elaborate gauge, where

wave equations for curvature are coupled with transport and elliptic

equations for the connection.

In view, moreover, of the additional difficulties described previously, we could

add:

3. How do these difficulties interact with the difficulties of 3.1–3.2?

4. How does one pick the final parameters a, M , and the centre of mass

frame?

cf. Holzegel
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4. Why the scattering problem is easier–but not trivial!

Halepa, Evolution Equations, June 21, 2012 23



Construction of dynamical vacuum black holes from scattering data

4.1 The scalar wave equation 2gψ = 0
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Dimock scattering theory for 2gψ = 0 on Schwarzschild

Recall the Killing field ∂t in Schwarzschild.

Let X0 denote the space of finite energy flux with respect to ∂t on a slice t = 0
of the exterior.

Let XI+ denote the space of finite asymptotic energy flux with respect to ∂t on

I+.

Let XH+ denote the space of finite energy flux with respect to ∂t on H+. Note
that this is highly degenerate!

Then we have:

Theorem (Dimock 1985). The map X0 → XI+ ⊕XH+ defined by solving the

forward problem and “restricting” to H+ and I+ is in fact an isomorphism.

See also Bachelot.
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This scattering theory, however, unfortunately does not go very far!

On Kerr, the forward map

X0 → XI+ ⊕XH+

is not even well defined.

Uniform boundedness is only known for solutions with finite non-degenerate

positive definite energy.

This is the energy associated with the vector field N related to the red-shift

estimate.

Thus the ∂t-scattering theory is inappropriate even for the scalar wave

equation!
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N-scattering theory for 2ψ = 0 on Schwarzschild/Kerr

The red-shift is now a blue-shift.

H
+

I
+

A

B

This means that one must impose exponential decay along H+ and I+.

Halepa, Evolution Equations, June 21, 2012 27



Construction of dynamical vacuum black holes from scattering data

Once one accepts this obstruction, and imposes such data, then the scattering

problem for 2gψ = 0 becomes very easy!

One just needs to show that solutions grow at most exponentially when solving

backwards. For this, one need only apply the energy identity for N , and

Gronwall.

In particular, the trapping difficulty, so painful for the forward problem, does

not appear.
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4.2 Linearised gravity
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Recall the characteristic new difficulties in passing from the scalar problem to

linearised gravity.

In some sense, the first difficulty (lack of a conserved energy) is not relevant

since we are imposing exponential decay and dealing with the N -energy.

On the other hand, the second difficulty remains. Not all degrees of freedom

decay, and we need to prevent the non-decaying degrees of freedom from being

infinitely blue-shifted.

Thus, one must still understand how to “separate out” the degrees of freedom

which decay from those that don’t, without destroying the structure of the

equations.
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4.3 The nonlinear vacuum Einstein equations
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Again, recall the difficulties described in the forward problem.

We still have difficulties 1.–3.

(Note that, the blue-shift aside, difficulty 1. again would exclude a scattering

theory based solely on the finiteness of the ∂t flux on null infinity I+. Even to

solve locally around null infinity, one must take weighted estimates, and this

will require also decay along null infinity, though this obstruction will only be

polynomial.)
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One slide summary of the proof

We introduce a systematic formulation of a set of

• “renormalised” spin coefficients “Γ”, and

• curvature coefficients “ψ”

such that Γ = ψ = 0 for Kerr. These are defined with respect to a null frame

adapted to a double null foliation (Christodoulou).

The ψ satisfy Bianchi-type equations (hyperbolic) and Γ transport and elliptic

equations. The structure of the system is preserved by commutation with

respect to an appropriate set of commutation vector fields.

We apply energy estimates to ψ associated with N and with a new hierarchy of

weighted vector fields near I+ capturing peeling. We apply transport estimates

to control Γ. The weighted hierarchy also captures the “null condition”.

Ô⇒ these weighted energies grow at most exponentially when solving

backwards.
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Some technical details

Ambient differential structure.

Approximation by a finite problem.

Prescription of data on null hypersurfaces. Constraints. (See

Christodoulou).

Limit to null infinity. (See Christodoulou)

Well posedness and inherent loss of derivatives of characteristic initial value

problem. (Rendall, Muller Zum Hagen, Christodoulou)

Differences of solutions.
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Conjecture. Consider scattering data which decays inverse polynomially along

I+ and H+. Then one can attach a development spacetime (M, g), but, for
generic such scattering data, H+ will be singular in the transverse directions.

cf. Robinson–Trautman spacetimes

This conjecture should not be interpreted as suggesting that generic solutions

of the forward problem cannot have polynomial decay! Rather, that one cannot

“spot” the solutions of the forward problem arising from smooth data just by

looking at the decay on I+ and H+.

Kerr-de Sitter? Here, a pure harmonic coordinate approach could work.

cf. also parametrizing solutions from scattering data for asymptotically pure de

Sitter (H. Friedrich)
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