

Probing cosmology & fundamental physics with Einstein Telescope Thomas Dent Albert-Einstein Institut, Hannover 23/6/2012 - NEB 15, TEL of Crete, Chania

Advanced GW detectors and beyond

- Advanced era: 2015+
 - First direct GW detections
 - Characterize source populations
 - Compact binary inspiral, burst-like, continuous-wave, stochastic

- Large uncertainty in source strength / rates
 - CBC rates from ~1/yr ('low') to ~10³/yr ('high')
- Many questions will remain after detection
 - Fundamental physics, cosmology, detailed

astrophysics of sources ...

Einstein Telescope

- Planned 3rd-generation GW observatory
- Conceptual Design Study completed in 2011
- Goal : improve on Advanced detector sensitivity by ~ factor 10
- Equilateral △ : most cost– effective way to see both GW polarizations
- Underground : reduce low-frequency noises

http://www.et-gw.eu/etdsdocument

Projected ET sensitivity curves

 "Xylophone" idea: separate HF and LF interferometers

- HF: high power, room temperature
 - 3 MW arm cavity power
- LF: low power, cryogenic
 - Silicon mirrors, mass ~ 200kg, cooled to 10K

ET reach for binary sources

ET science in one slide

- 1. Fundamental physics & gravity
 - Graviton mass, Brans-Dicke parameter, deviations from PN phasing, no-hair property
 - Masses and EoS of compact stars
- 2. Astrophysics
 - Pulsar glitches, neutron star instabilities
 - GRB progenitors
 - Core-collapse SN

- 3. Cosmology
 - Hubble constant & expansion history of Universe
 - Evolution of binary merger rate
 - IMBH
 - GW background from early Universe

Stochastic GW backgrounds at ET Fundamental Physics in the Early Universe

Stochastic GW background

- GW from many overlapping sources
 - Most cannot be individually resolved
- Sources
 - Astrophysical: many weak sources at large distance
 - Cosmological: processes in the early Universe
- Detect by cross-correlation of two detector outputs
- Contribution to energy density $\Omega_{GW}(f)$
 - Recent limit $\Omega_0 < 6.9 \times 10^{-6}$ $f \sim 100$ Hz LSC & Virgo Collaborations, Nature 2009
 - $\circ\,$ ET: projected limits $\Omega_{\rm GW} \lesssim\,10^{-11}$, $f\sim\,5$ 1000 Hz

Astrophysical sources

Many sources overlapping in time/frequency:

"confusion noise"

- Continuous : pulsars, magnetars
- Burst-like : CCSN
- Inspiral : BNS, BBH
- Large uncertainty on expected signals
- Some sources could be identified & removed – 'popcorn'?

Early Universe sources: inflation?

- Fluctuations of quantum fields generate tensor modes – GW field *h* (t,x)
- GW background redshifted to low frequency
- Flat spectrum: $\Omega(f) \sim \text{constant}$
- WMAP tensor bounds imply Ω(f) < 10⁻¹⁴
 Unobservable at ground-based detectors
- Exception: inflaton coupled to light gauge fields A_u
 - Light field quanta produced & source tensor modes
 - Close to end of inflation ⇔
 higher frequency
 - Potentially observable!

R. Battye & P. Shellard

- Topological defects produced at phase transitions in early Universe
- Dimensionless string tension parameter Gµ
- Vibrations, kinks, intersections : GW emitted
- GW spectrum $\Omega(f)$ expected to be flat
 - Amplitude depends on Gµ and on string evolution

Narrow-band sources

- Processes occurring at given scale factor a* and/or temperature T*
 - Reheating after inflation: non-equilibrium classical fields
 - Phase transitions
 - bubbles nucleate, collide, turbulence, magnetic fields...
 - $\Omega(f)$ spectrum **peaked**
 - f_{peak} may be in ET band (5–1000Hz)
 - fine-tuned parameters ?
 - Amplitude and f_{peak} value \Leftrightarrow parameters of new physics

Plot: Easther et al., PRL 99 (2007) 221301

The stochastic landscape at ET

Cosmography with GW standard sirens

Probing the expansion history of the Universe

GW standard sirens

- Binary inspirals emit 'chirp' waveforms
 - Frequency evolution gives 'chirp mass'
 M_c to high accuracy (up to redshift factor)
 - Absolute luminosity in GW known from M_c

- ► Observed amplitude ⇒ luminosity distance
 - 'Self-calibrating standard siren'
- Redshift z given from optical observation
 - Other methods possible eg NS tidal deformation

 $h_{obs} \propto M_{\rm c}({\rm obs})^{5/6} D_{\rm L}^{-1}$ $M_{\rm c}({\rm obs}) = (1+z)M_{\rm c}({\rm phys})$

Messenger & Read PRL 108 (2012) 091101

Cosmography with GW / sGRB

- Short hard GRB believed to originate from compact binary coalescence (mainly BNS)
- ▶ 10⁵-10⁶ events/year observable in ET
- GRB are *beamed* : only a small fraction seen with optical counterpart $w(z) \equiv p_{de}/\rho_{de} = w_0 + w_a z/(1+z)$
- With ~1000 events : probe expansion of Universe via D_L-z
 - Comparable to SN1a, BAO probes of "dark energy"
 - Completely independent method

Summary

- ET expected to see 10⁵-plus binary inspiral events per year
 - Use as 'standard sirens' in combination with EM observations (& possibly without)
 - Probe expansion history of Universe
 - Many other applications in cosmology
- ET sensitivity to stochastic BG: $\Omega(f) \sim 10^{-11}$
 - Many likely astrophysical sources
 - Possible primordial (early Universe) sources
 - Window to new physics?

