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Cutline

Analytical and numerical setup:

e GR-Resistive MHD (with ideal MHD and Electrovacuum limits)
e Stiff terms and RKIMEX evolution schemes

Tests:
e Shock Tubes, Alfven Waves, Current Sheets (1D)

Numerical Evolution of Stars:

e Stable star with magnetic field extending outside the star

e Unstable star with magnetic field extending outside the star -
gravitational collapse to a black hole
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Motivation

GR-RMHD provides a single mathematical framework which
can accurately describe the interior of a star, the

magnetosphere and vacuum reg

IoNS.

It allows resistive effects (like reconnection of the magnetic
field lines) and offers some control over the amount of

resistivity in the system.

The GR-RMHD system is hyperbo
terms, as the diffusive effects ta

ic with stiff relaxation

Ke place on different

time-scales than the dynamical ones.
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Crashing neutron stars can make gamma-ray burst jets

Neutron stars

Masses: 1.5 suns

Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 milliseconds 13.8 milliseconds

15.3 milliseconds 26.5 milliseconds

Credit: NASAJAEI/ZIB/M. Koppitz and L. Rezzolla

J/M? = 0.83 Mior = 0.063Mo  tacer ~ Mior/M ~ 0.3 s



The Resistive MHD formalism

Maxwell equations: B*, E"

DiE' — €9*V,(a By) + ay?V; ¥ =a K E' — a J"
D; B* + eijkvj(aEk ) +ay?V;® =aK B

Divergence cleaning: ¢,v
DV +aV;E'=aq—akV
D:®+aV;B' = —ak®

Charge Density: ¢ = V;E"
Diq+Vi(aJ')=aKq

Hydrodynamic equations: D, S;, T
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The Resistive MHD formalism

Maxwell equations: B*, E"

D; E' — eijij( a By ) + a?"ijVj U =ak E

D: B + €7*V(a By )+ a9V, ® = a K B
Divergence cleaning: ¢,v
DV +aV;E'=aq—akV
D;®+aV;B" = —arx®
Charge Density: ¢ = V;E"
Diq+Vi(aJ')=aKq

Hydrodynamic equations: D, S;, T
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The Resistive MHD formalism

by L— qvi + ‘/VU[Ei e Eijk’UjBk — (’UkEk)Ui] T

Resistive regme: low o

Require that the current is finite when o — oo

deal MHD limit:  E* = —¢"%v; By

Electrovacuum lmit: ¢ — 0, 0 = 0

The conductivity 0 can lead to a stiff term in the
evolution equation of electric field.
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Ot W

OV

Fw(V, W)

Fyv(V, W) +

RK IMEX M

1) Explicit step -

ethods

Pareschi & Russo 2005)

— — == —_— ———

W%{D7S7T?Q7B7w7¢}

Ry (V, W) 1

| | V- FE, - —o0

2) Implicit step

W =W" + At Y ay;Fw (UD) VO = V* 1ay 2L Ry (vO W)

e(i)
wh = w*

a) Assuming linear dependence
Ry (V,W) = A(W)V + S(W)
b) We simply invert

At

e

S(W7))
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Results
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Large Amplitude Alfven waves

1.5 BB | |
1 | h
0.5 -
M 0 -
-0.5 __ exact -
__ ax = 1/50
_1 ____Bx = 1/100
....... Ax = 1/200
-1.5 I L 4 | | '
-0.4 -0.2 0 0.2 0.4

o— 10°

Propagation of large
amplitude Alfven
waves in a uniform
background field B, in
a domain with periodic
boundary conditions.

The numerical
solution after one full
period converges to
the exact one.
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Large Amplitude Alfven waves
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Test 1D: Self-similar current-sheet

-0.5 |-

——--t=10
— t=10 (exact)

0.5 -

o— 100

Slow diffusive
expansion of the layer
due to the resistivity.
The width of the layer
becomes larger and it
evolves in a self-
similar fashion.

Numerical solution
converges to the
exact one.
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Numerical Evolution of Stars




Non-rotating Stable Star with Magnetic field
extending outside the star

The magnetic field lines and the rest mass density, at times t = 0O
and t = 37 ms. As expected, the magnetic field remains stable
after several tens of ms.
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Non-rotating Stable Star with Magnetic field
extending outside the star

log(p)
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The magnetic field lines and the rest mass density, at times t = 0O
and t = 37 ms. As expected, the magnetic field remains stable
after several tens of ms.
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Non-rotating Stable Star with Magnetic field
extending outside the star
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Gravitational Collapse of a Magnetized star
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The fluid rest mass density, the radial Poynting vector and
the magnetic field ines at tmest=0msandt = 1.1 ms.
The perturbed electromagnetic field radiates a part of its
energy through electromagnetic waves.
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Gravitational Collapse of a Magnetized star
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Gravitational Collapse of a Magnetized star
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Gravitational Collapse of a Magnetized star
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1.8

Imprint of the quasi-normal
modes of the final perturbed
black hole on the magnetic
flux. The frequency of the
ringing magnetic field is:

w = 0.343384(£0.5%) - i
6.48543(%£5%) kHz

corresponding to a non-
rotating black hole of 2.7Ma.
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Gravitational Collapse of a Magnetized star
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Conclusions

* \We present an alternative approach to the numerical
treatment of the GR-Resistive MHD formalism based on IMEX
methods.

* \We provide a Cactus+Whisky full 3D GR-RMHD
implementation, robust in all regimes of conductivity and able
to accurately follow the evolution of regions where shocks
OCCur.

* The accuracy of our code has been verified against exact
solutions in 1D tests.

* \We can successfully perform evolutions of magnetized stars,
using non-constant conductivity profiles in order to capture
both the ideal MHD regime (inside the star) and the electro-
vacuum regime (in the magnetosphere).

Thursday, June 28, 2012



Thawnle jc;:-u.!




