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Introduction

Evaluation of the conformal flatness condition (CFC) approximation in various phys-
ical systems is crucial in order to better understand the limits within which it can be
applied, as well as the magnitude of the error one is making by choosing to apply
the CFC approximation in a physical problem instead of full general relativity. Cook,
Shapiro and Teukolsky (CST) [1] used the scheme developed by Komatsu, Eriguchi
and Hachisu (KEH) [2, 3] in order to test the CFC approximation for the case of
single, uniformly rotating, relativistic stars yielding very encouraging results. In this
work, we study the quality of CFC for the case of differential rotation and we verify
its excellent performance for the case of uniform rotation.
Following KEH the line element for a stationary, rotating, axisymmetric star in equi-
librium is given by

ds2 = −eγ+ρdt2+ eγ−ρr2 sin2 θ(dφ−ωdt)2+ e2µ(dr2+ r2dθ2) , (1)

where γ, ρ, ω and µ are metric potentials depending only on r and θ. We as-
sume that the stellar matter behaves as a perfect fluid and that the equation of state
obeys the polytropic relation

p = Kρ1+
1
N , (2)

where ρ is the rest mass density, K the polytropic constant and N the polytropic
index. For the case of differential rotation we adopt the same rotation law as in
KEH, namely

F (Ω) = A2(Ωc − Ω) , (3)

where, A is a positive constant that determines the length scale over which the an-
gular velocity changes within the star and Ωc is the angular velocity at the center of
the configuration.

Method

Using the basic assumption of the CFC approximation, γab = ψ4nab, and the fact
that for an axisymmetric star in spherical coordinates βφ is the only non-zero com-
ponent of the shift vector βα, the line element in the CFC approximation is written
as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) ⇒

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2) + ψ4r2 sin2 θ(dφ+ βφdt)2 (4)

Comparing the above expression to the form of the line element in the KEH scheme,
i.e relation (1), we get

α = e(γ+ρ)/2 , ψ = eµ/2 = e(γ−ρ)/4 , βφ = −ω .

From the second relation above we obtain

µ =
γ − ρ

2
. (5)

Using the above relation in the standard KEH scheme instead of the differential
equation for µ, we impose the CFC on our solution.
Various physical quantities are calculated for each model both in CFC and in full GR.
As a diagnostic of the quality of the CFC we use the quantity

∆c =
µfull GR − µCFC

µCFC
=
µ−

γ−ρ
2

µ
. (6)

In addition, relative differences between CFC and full GR are calculated for every
physical quantity. The above procedure is applied in the sequences of models that
appear in Table I of [4]. Sequences A and B consist of differentially rotating models,
whereas sequences AU and BU of uniformly rotating models. Configurations in se-
quences A and AU have constant rest mass ofM0 = 1.506M⊙ and configurations
in sequences B and BU have constant central mass density of ρc = 1.28 × 10−3

or equivalently constant central energy density of ǫc = 1.444 × 10−3.

Results

The outcome of our tests for the different models constructed is very encouraging.
Concerning the physical quantities that we calculated, the relative differences be-
tween CFC and full GR were around or well below 10−2 in most cases. We also
present the quantity ∆c in the x − z plane and also as a function of the CST vari-
able s which maps radial infinity to s = 1, for the fastest rotating models of each
sequence. The polar to equatorial radius ratio, rp/re, is used to indicate how fast a
certain configuration is rotating. The most extreme case is the model B13 but even
in that case the maximum value of ∆c is around 6%. The following figures summa-
rize our results.
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Conclusions

The CFC approximation appears to be a robust method to study systems that exhibit
differential rotation if the demands for accuracy are not particularly strict, i.e if one
can cope with a maximum error of around 5%. In most cases the errors encountered
are significantly lower and one should examine the fastest rotating models to ob-
serve the maximum error mentioned above. In sequence A, all the relative differences
calculated are below 1% and ∆c for the fastest rotating model of the sequence re-
mains below 2%. In sequence B larger deviations are observed, however only the rel-
ative differences for the angular velocities approach the maximum value of 6%. The
diagnostic ∆c for the fastest rotating model of sequence B indicates that the max-
imum deviation from full GR is only around 6%. This result should provide added
confidence in choosing the CFC approximation as a possible candidate to tackle an
astrophysically relevant problem that involves differential rotation.
As far as the case of uniform rotation is concerned, we verified that the CFC ap-
proximation works particularly well. For every physical quantity that was evaluated,
the corresponding relative difference between CFC and full GR never exceeded 1%,
staying mainly in the 10−4 to 10−3 range. In addition, the diagnostic ∆c for the
fastest uniformly rotating models remained under 2%.
Future directions for this project include the calculation of the Bach tensor for ev-
ery configuration in order to add another diagnostic in our study of the CFC approx-
imation. If the CFC approximation is a valid method for studying systems that rotate
differentially, then the Bach tensor should vanish or otherwise be close to zero. We
expect that the calculation of the Bach tensor will not alter significantly the already
produced results but will further strengthen CFC as a satisfactory approximation of
full GR.
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