Black Holes in Higher Dimensions

Burkhard Kleihaus

Institute of Physics CvO University Oldenburg

NEB15 Recent Developments in Gravity, Chania

Burkhard Kleihaus (Uni. Oldenburg)

Black Holes in Higher Dimensions

Friday, 22 June, 2012 1 / 29

Outline

Thanks to:

Jutta Kunz (Oldenburg University)

Eugen Radu (Oldenburg University)

Maria Rodriguez (Harward Univeristy)

Outline

Motivation

4D Spacetimes

- Black Holes are a consequence of Einstein gravity
- Astrophysical evidence
- Well studied und understood nowadays

Higher Dimensional Spacetimes

- Understand what is special in 4D spacetimes
- Superstring theories are candidates for Quantum Gravity
 - require higher dimensional spacetimes
- Gravity in spacetimes with compact dimensions
- What is the role of topology?

Not Included in this Talk

- AdS Black Holes, Braneworld Black Holes, Supersymmetric Black Holes
- Higher order curvature gravity

_			
m	-	•	
· · ·			-
_			

Outline

- Reminder: Black Holes in D = 4 Dimensions
- 2 Black Holes in D > 4
- 3 Black Rings in D = 5
 - 4) Black Rings in D = 6
- 5 Black Strings
- 6 Conclusions

Reminder: Black Holes in D = 4 Dimensions

	Vacuum	Charged
static	Schwarzschild (M)	Reissner-Nordström (M, Q, P)
rotating	Kerr (M, J)	Kerr-Newman (M, Q, P, J)

Properties

Global charges:

Mass M, e.-m. charges Q, P, angular momentum J

- define uniquely the Black Hole spacetime (Uniqueness)
- Topology: Spherical horizon topology S²
- 1st Law: $dM = TdS + \Omega_{\rm H}dJ + \Phi_{\rm H}dQ$
- Smarr formula: $M = 2TS + 2\Omega_H J + \Phi_H Q$

• Gyromagnetic ratio: $g = \frac{2M\mu_{\text{mag}}}{QJ} = 2$

Static Black Holes in $D \ge 4$

$$ds^{2} = -N(r)dt^{2} + \frac{1}{N(r)}dr^{2} + r^{2}d\Omega_{D-2}^{2}$$

Vacuum [Tangherlini (1963)]

$$N(r) = 1 - \left(\frac{r_{\rm H}}{r}\right)^{D-3}$$
, Mass $M = \frac{r_{\rm H}}{2G}$

Electrically charged EM [Myers & Perry (1986)]

$$N(r) = 1 - \frac{C}{r^{D-3}} + \frac{D^2}{r^{2[D-3]}}$$

Mass
$$M = \frac{(D-2)CA_{D-2}}{16\pi G}$$
, Charge $Q^2 = D^2 \frac{(D-2)(D-3)}{8\pi G}$
Outer Horizon $r_{\rm H}^{D-3} = \frac{C}{2} + \left(\frac{C^2}{4} - D^2\right)^{1/2}$

-

э

Rotating Black Holes in D > 4

Solutions in closed form [Myers & Perry (1986)]

- D 1: dimension of space
- number of independent planes: n:
- $n \equiv \left\lceil \frac{D-1}{2} \right\rceil$ number of independent angular momenta J_i n:

example:
$$D = 5, n = 2$$

Rotating Black Holes: Domain of Existence

- D = 5:
 - domain of existence is bounded

scaled angular momenta

• D = 6:

• domain of existence is unbounded on axes:

scaled angular momenta

Rotating Black Holes: Domain of Existence

a single angular momentum $J_1 = J$ ($J_i = 0, i > 1$)

scaled horizon area A_H versus scaled angular momentum J

Charged EM Black Holes in D > 4

No charged rotating EM Black Holes in closed form

Special case: D odd, equal angular momenta $J_i = J, i = 1, ..., N$

[Kunz, Navarro & Petersen (2005); Kunz, Navarro & Viebahn (2006)]

numerical solutions - ordinary differential equations

• Smarr relation
$$\frac{D-3}{D-2}M = \frac{\kappa A_{\rm H}}{8\pi G} + N\Omega J + \frac{D-3}{D-2}\Phi_{\rm H}Q$$

Charged EM Black Holes in D > 4

Special case: D = 5, a single angular momentum $J_1 = J$, $J_2 = 0$

[Kunz, Navarro & Petersen (2005)]

numerical solutions - partial differential equations

• Smarr relation
$$\frac{2}{3}M = \frac{\kappa A_{\rm H}}{8\pi G} + \Omega_1 J_1 + \frac{2}{3}\Phi_{\rm H} Q$$

• gyromagnetic ratio g = 3 (perturbative)

The Show So Far:

D > 4	Vacuum	Charged
static	M	M, Q
rotating	M , J_i	M, Q, J_i

Properties

 Global charges: Mass M, 	em. charge Q , angular momenta J_i
Smarr formula:	$\frac{D-3}{D-2}M = \frac{\kappa A_{\rm H}}{8\pi G} + \sum \Omega_i J_i + \frac{D-3}{D-2} \Phi_{\rm H} Q$
Topology:	Spherical horizon topology S^{D-2}

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

The Show So Far:

D > 4	Vacuum	Charged
static	M	M, Q
rotating	M , J_i	M, Q, J_i

Properties

Global charges:	
Mass M , e	em. charge Q , angular momenta J_i
Smarr formula:	$\frac{D-3}{D-2}M = \frac{\kappa A_{\rm H}}{8\pi G} + \sum \Omega_i J_i + \frac{D-3}{D-2} \Phi_{\rm H} Q$
Topology:	Spherical horizon topology S^{D-2}

New Solutions: non-spherical topology

- D-1 dim Black Hole + flat direction \rightsquigarrow Black String
- Bend to a ring ~→ Black Ring
- Horizon topology: $S^1 \times S^{D-3}$

[Emparan & Reall 2002]

Black Ring horizon topology $S^1 \times S^2$

Static Ring

- attraction: gravity/string tension shrink ring
- repulsion:
 - conical singularity

inside: push outside: pull

unbalanced ring

rotating ring

- attraction:
 - gravity/string tension
- repulsion:

rotation along S^1

- centrifugal force
- balanced ring

[Emparan & Reall 2002]

static Black Ring: string pulling from outside the ring (shown)

static Black Ring: strut pushing from inside the ring (not shown)

Burkhard Kleihaus (Uni. Oldenburg)

[Emparan & Reall 2002]

rotating Black Ring:

no conical singularity: appropriate horizon velocity

Burkhard Kleihaus (Uni. Oldenburg)

Black Holes in Higher Dimensions

Black Holes & Black Rings in D = 5

[Emparan & Reall 2002]

phase diagram

nonuniqueness

region with

- MP Black Holes
- fat Black Rings
- thin Black Rings

scaled horizon area A_H vs. scaled angular momentum J^2

Electrically Charged EM Black Rings in D = 5

[Kleihaus, Kunz & Schnülle (2011)]

Properties

- Numerical solutions partial differential equations
- a single angular momentum
- rotating balanced Black Rings

• Smarr relation
$$M = \frac{3}{16\pi G}\kappa A_H + \frac{3}{2}\Omega_H J + \Phi_H Q$$

Burkhard Kleihaus (Uni. Oldenburg)

Black Objects in D = 5

More black objects with non-spherical topology

- Black rings with 2 angular momenta [Pomeransky et al. (2006)]
- Black di-rings [Iguchi et al. (2007)]
- Black saturn [Elwang et al. (2007)]
- Black bi-rings [Elwang et al. (2008)]
- Black rings with dipole charge [Yazadiev (2006), Emparan (2004)]

• . . .

Black Objects in D > 5

- Powerful method in D = 4 and 5: Generalized Weyl coordinates [Emparan & Reall (2002)]
- Fails in higher dimensions

The Blackfold Approach

[Emparan et al. (2007), (2009)]

- Matched asymptotic expansion
- Two different lengthscale
- Approximate analytical solutions
- Thin Black Rings in $D \ge 5$
- Fails for fat Black Rings
- Predicted new Black objects with non-spherical horizon topology

Black Objects in D = 6

[Emparan, Harmark, Niarchos, Obers, Rodriguez (2007)]

phase diagram (proposed)

scaled area A_H vs. scaled angular momentum J^2

nonuniqueness

region with

- MP Black Holes
- pinched Black Holes
- Black Rings
- Black Saturns

• . . .

[Kleihaus, Kunz & Radu (2012)]

Properties

- Horizon topology: $S^1 \times S^3$
- rotation in $S^1 \longrightarrow$ balanced Black Rings

Numerical results

Pinched Black Holes?

Generalized Black Ring: $S^2 \times S^2$

[Kleihaus, Kunz & Radu (2009)]

SP

NP

- Numerical solutions similar to Black Rings
- No rotation Non-balanced solutions
- conical deficit/excess
- Higher dimensions: $S^3 \times S^2$, $S^4 \times S^2$, etc.

More solutions in [Kleihaus, Kunz, Radu & Rodrigues (2011)]

And now . . .

... for something completely different

BLACK STRINGS

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Black Strings

String Theories

- Higher dimensional spacetimes
- Gravity in D > 4
- Compact extra dimensions

Consequences for Gravity?

- Uniform Black Strings
- Non-uniform Black Strings
- Caged Black Holes

(D-1) spacetime $\times 1$ comp. dim.

L length of compact dimension

Uniform Black String

- (*D* 1)-dim Black Hole stretched in extra dim.
- horizon $S^{D-3} \times S^1$
- asympt. $\mathcal{M}^{D-1} \times S^1$
- exist for all L, M
- unstable for small M

[Gregory & Laflamme (1993)]

Non-uniform Black String

- emerge from uniform BS
- depend on extra coord.
- horizon $S^{D-3} \times S^1$
- \bullet belly ($R_{
 m max}$) and waist ($R_{
 m min}$)
- Non-uniformity $\lambda = \frac{1}{2} \left(\frac{R_{\max}}{R_{\min}} 1 \right)$

Wiseman (2003), Kleihaus et al. (2006)]

Black Strings

Caged Black Hole

caged Black Hole

- horizon S^{D-2}
- exist for small masses

[Sorkin et al. (2003), Kol (2005, 2006),

Kudoh & Wiseman (2005)]

Black Strings

Topology changing transition?

non-uniform Black String $S^{D-3}\times S^1$

pinch off

 $\begin{array}{c} \text{caged Black Hole} \\ S^{D-2} \end{array}$

Topology changing transition?

[Kleihaus, Kunz & Radu (2006)]

Black Strings

Burkhard Kleihaus (Uni. Oldenburg)

Rotating Black Strings

[Kleihaus, Kunz & Radu (2007)]

D = 5

Uniform Black String

```
Kerr Black Hole (r, \theta) + compact dimension (z)
```

Non-uniform Black String

Metric functions depend on (r, θ, z)

D = 6

Uniform Black String

Myers-Perry Black Hole (r, θ) + compact dimension (z)

• Equal angular momenta $J_1 = J_2 = J$

Myers-Perry Black Hole (r) + compact dimension (z)

Non-uniform Black String

Metric functions depend on (r, z)

Black Strings

Rotating Black Strings

No non-uniform Black Strings below T*

Conclusions

Conclusions

- Static and spherically symmetric Black Holes
 - Schwarzschild and Reissner-Nordström Black Holes generalized to *D*-dim counterparts
- Stationary rotating Black Holes
 - Several independend angular momenta
 - Kerr Black Holes generalized to *D*-dim Myers-Perry Black Holes
 - Electrically charged Black Holes: Numerical investigations
- Black Holes with non-spherical horizon topology
 - D = 5: Black Rings, Black Saturn, Black Di-Rings, ... known in closed form Numerical studies on electrically charged Black Rings
 - D > 5: Blackfold approach (approximate solutions)
 - D = 6: Black Rings
 - $S^2 \times S^2$ horizon topology
 - Pinched Black Holes?

Black Strings

- Long (or thin) uniform Black Strings are unstable
- non-uniform Black Strings
- caged (or localized) Black Holes
- Topology changing transition?
- Stationary rotating non-uniform Black Strings in D = 6

Thank you very much!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで