Theory Results Summary

Effect of Temperature on Oscillations in Young Neutron Stars

Christian Krüger

University of Southampton

NEB XV: June 23, 2012

Christian Krüger

Final Aim

Calculate linear oscillations on a neutron star model and

- take temperature, composition, crust, superfluids etc. into account
- use realistic, modern equation of state
- everything in *General Relativity*!

Ingredients

- Take non-rotating neutron star as background
- Modelled as perfect fluid
- Temperature profiles for different time points
- Calculate first-order perturbations on this background

APR Equation of State

- allows for $2 M_{\odot}$ neutron stars
- constructed from realistic quantum many-body calculations
- we know how to extend for superfluidity and two-fluid systems
- \bullet one-parameter EoS \rightarrow add thermal pressure manually
- *Douchin-Haensel* EoS for the crust is manually matched at the crust-core interface

Mode classification

A non-rotating neutron star exhibits the following mode classes:

mode class	cause	affected by temperature
f-mode	surface of the star	no
p-mode	pressure	slightly
w-mode	spacetime	no
g-mode	gravity/buoyancy	yes
i-mode	density jump	no
elasticity modes	elasticity of crust	slightly
superfluid modes	superfluidity	"yes"

э

f-modes are due to surface of the star

p-modes are due to variation in pressure

w-modes are due to spacetime curvature

$$ilde{g}_{\mu
u}=g_{\mu
u}+h_{\mu
u}$$

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

f-modes are due to surface of the star

p-modes are due to variation in pressure

w-modes are due to spacetime curvature

$$ilde{g}_{\mu
u}=g_{\mu
u}+h_{\mu
u}$$

A B > A B >

f-modes are due to surface of the star

p-modes are due to variation in pressure

w-modes are due to spacetime curvature

$$\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$$

∃ ▶ ∢

Composition g-modes

- slow reaction
- nature of moving fluid element does not change \rightarrow frozen composition
- enters through adiabatic index

$$\Gamma_f = \frac{\rho + p}{p} \left(\frac{\partial p}{\partial \rho}\right)_{n, T}$$

 differs from background which is assumed to be in β-equilibrium

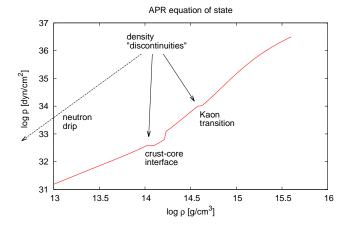
Composition g-modes

- slow reaction
- nature of moving fluid element does not change \rightarrow frozen composition
- enters through adiabatic index

$$\Gamma_{f} = \frac{\rho + p}{p} \left(\frac{\partial p}{\partial \rho} \right)_{n, T}$$

• differs from background which is assumed to be in β -equilibrium

$$\Gamma_{\beta} = \frac{\rho + p}{p} \left(\frac{\partial p}{\partial \rho} \right)_{\beta}$$


g-modes due to a temperature gradient

Thermal pressure is added on top of cold EOS:

$$p = p_0(\rho) + \frac{p_{th}}{n}(n, T)$$

- $p_0(\rho) = APR$ equation of state (cold)
- $p_{th}(n, T) = \frac{\pi^2}{6} nkT \frac{kT}{E_F}$
- effect on background negligible, but important for perturbations
- separate thermal pressure for different particles

i-modes due to density discontinuities

æ

- 4 同 6 4 日 6 4 日 6

Neutron Star Model

Calculate mode evolution for a particular neutron star:

- Star #1 with $M = 1.4 M_{\odot}$, R = 11.47 km, $\rho_c = 1.0 \cdot 10^{15} \frac{g}{cm^3}$
- Use temperature profiles for $t\in [10^{-6}\ yr, 10^{6}\ yr]$ (provided by W. Ho)

Neutron Star Model

Calculate mode evolution for a particular neutron star:

• Star #1 with $M = 1.4 M_{\odot}$, R = 11.47 km, $\rho_c = 1.0 \cdot 10^{15} \frac{g}{cm^3}$

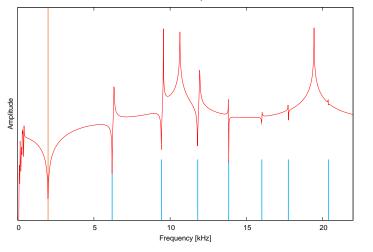
• Use temperature profiles for $t \in [10^{-6} yr, 10^{6} yr]$ (provided by W. Ho) Star #2 with $M = 2.0 M_{\odot}$...

Neutron Star Model

Calculate mode evolution for a particular neutron star:

- Star #1 with $M = 1.4 M_{\odot}$, R = 11.47 km, $\rho_c = 1.0 \cdot 10^{15} \frac{g}{cm^3}$
- Use temperature profiles for $t \in [10^{-6} yr, 10^{6} yr]$ (provided by W. Ho) Star #2 with $M = 2.0 M_{\odot}$...

Work on cooling code for higher mass neutron stars (needs dURCA) is in progress...


- 4 同 6 4 日 6 4 日 6

Christian Krüger

High Frequency Domain

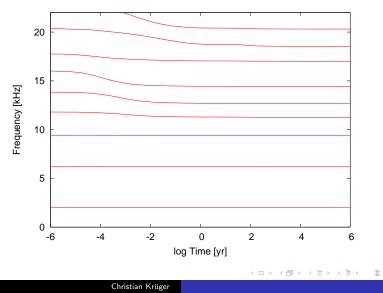
t = 1.0e-07 yr

æ

《口》 《聞》 《臣》 《臣》

Theory Results Summary

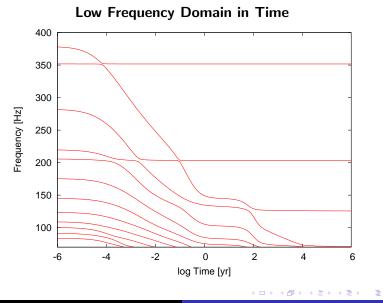
Movie: High Frequency


Christian Krüger

2

《口》 《聞》 《臣》 《臣》

High Frequency Domain in Time



Theory Results Summary

Movie: Low Frequency

2

Christian Krüger

Summary

- Calculated time evolution of several classes of modes as the star cools down \rightarrow main effect (as expected) on g-modes
- The neutron star model as well as the temperature profiles are calculated using modern equation of state and cooling codes
- Calculations are done in *General Relativity*
- Kaon transition as well as neutron drip give rise to i-modes.

Next steps:

- implement equations for elasticity
- account for superfluidity