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Motivation

In the case of extreme mass ratio inspirals (EMRI) systems 
there are mainly two reasons for studying “bumpy” black 

hole (non-integrable) spacetime backgrounds:

1) To take into account the perturbation of the supermassive 
black hole (SMBH) spacetime due to the accreting matter.

2) To check whether the super massive objects at the centre 
of galaxies are indeed black holes.

Reviews

Babak, Gair ,Petiteau & Sesana, CQG (2010)
Bambi, MPL B (2011)
Amaro-Seoane et al. ArXiv: 1202.0839

Selected papers

Ryan, PRD (1995), (1997)
Collins & Hughes, PRD (2004)
Glampedakis & Babak, CQG (2006)
 Barausse, Rezzolla, Petroff & Ansorg, PRD 
(2007)
Gair, Li & Mandel, PRD (2008)
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Metric from the Manko-Novikov 
family (CQG, 1992)

Weyl-Papapetrou metric element in prolate spheroidal coordinates:

Gair, Li  Mandel, PRD (2008)

For q=0 we 
get the Kerr 
metric. 

For q>0 the 
compact object 
is more oblate 
than Kerr and 
for q<0 more 
prolate. 
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Coordinates transformations

From the prolate spheroidal coordinates 
(x,y) of the Weyl-Papapetrou metric to 
the cylindrical (ρ,z):

From the prolate spheroidal coordinates (x,y) of the Weyl-
Papapetrou metric to the Boyer-Lindquist (r,θ):

r=x (M2-(S/M)2)1/2+M, cos θ=y, where x ∈ [1,∞), y ∈ [-1,1]

By the above transformation the Kerr 
event horizon lies on x=1. 



5

 Geodesic approximation

In the generic case of stationary and axisymmetric spacetime 
background, the energy E and the azimuthal angular momentum 

L
z
 are constants of motion:

If we had a fourth integral of motion Q, then the 
system would be integrable and we could express 
the Hamiltonian into action-angle variables H(aa). 
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Kerr metric

The Kerr metric has the “extra” integral of motion, the Carter 
constant Q. Carter, PR (1968)

Though the Hamiltonian has not been yet expressed in 
action-angle variables, the characteristic frequencies
 ω

r
, ω

θ
, ω

φ
 were found “analytically” as functions of:

 the black hole spin a and mass M,
 the constants of motion (E, L

z
, Q) and

 the geometrical characteristics of the orbit
 (turning points of r and θ). Schmidt, CQG (2002) 

The ratio ν
θ
(Ε,L

z
)= ω

r
/ω

θ
 seems to be strictly monotonic 

function along a foliation of invariant tori.  (numerical 
indications, not proven!)
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Shaken, not stirred

By the two remaining integrals of motion E, L
z
 we can reduce 

the number of degrees of freedom from 4 to 2, i.e. instead of 4 
coupled ODEs we can study 2 coupled ODEs.

ODEs:

Thus, we restrict the motion and the dynamics on the meridian 
plane ( (r,θ)  Boyer-Lindquist, (ρ,z) Weyl-Papapetrou).

Consider a weak perturbation of a Kerr background that 
“breaks” the Carter constant, but leaves the background 
stationary and axisymmetric, e.g. a compact object more 

prolate or oblate than Kerr black hole.

 H
New

=H
Kerr

+q Η
Perturbation
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Two theorems to rule them all

If the perturbation is weak enough, then most of the 
non-resonant tori survive (KAM theorem)

 and the resonant tori transform into the Birkhoff chain 
(Poincaré-Birkhoff theorem).      

Resonance condition: 

n=2



9

Orbits on a surface of section 

Curve of 
Zero 

Velocity 
(CZV)

z=0, 
dz/dτ>0
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Effect of resonances

Apostolatos, L-G & Contopoulos, PRL (2009)
L-G, Apostolatos & Contopoulos, PRD (2010)
Contopoulos, L-G & Apostolatos, IJBC (2011)

We modified the rates of 
energy and angular 
momentum loss proposed 
by Gair & Glampedakis 
(PRD, 2006) for a Kerr 
black hole according to 
the prescription given in 
Gair, Li & Mandel, PRD 
(2008) 

The adiabatic 
approximation
(radiation
reaction 
included)

 
The unit  of 
time t is
5 M/M

Sun
 μs.

For M=106M
Sun 

a resonance  
that endures
Δt=5 104 Μ 
corresponds 
approximately  
to a week.
 

/Μ
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Effect of stickiness

ωω

S(ω) S(ω)

chaos
order

The stickiness concerns 
chaotic orbits which for 
various reasons stick 
for a long time interval 
in a region, close to an 
invariant curve, so that
their behaviour may 
resemble that of
regular orbits, before 
extending further away.

Contopoulos, Order and 
Chaos in Dynamical 
Astronomy, Springer (2002) 

L-G, Apostolatos & Contopoulos, PRD (2010)
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Different metrics similar structures
Zipoy, JMP (1966) Voorhees, PRD (1970) 

metric
Manko, Sanabria-Gómez, Manko, PRD (2000)

metric

L-G,  arXiv:1206.0660: 

Seyrich, L-G, in preparation 
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End of part 1:  Conclusions 

The resonance and the stickiness effect are generic 
characteristic of the geodesic motion in any non-

integrable Hamiltonian describing a stationary and 
axisymmetric background, i.e. in any (weak) perturbation 

of Kerr spacetime which remains stationary and 
axisymmetric.

These phenomena should be taken into account when 
templates are produced for EMRI systems.
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Part two:
Final stages of accretion onto 

bumpy black holes

G. Contopoulos, M. Harsoula and G. L-G,
“Periodic Orbits and Escapes in Dynamical Systems”,

 Celestial Mechanics and Dynamical Astronomy (2012)
arXiv:1203.1010
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Final stages of accretion onto
 non-Kerr compact objects

Bambi & Barausse
(PRD, 2011)

Here MN is the class of the 
Manko-Novikov (CQG, 1992) 
metric family introduced by
Gair, Li & Mandel, PRD (2008).

The MN metric deviates from 
the Kerr metric by a parameter:

Innermost Stable 
Circular Orbit (ISCO)
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The x-factor in Kerr metric

In the case of the Kerr 
metric from the “x” orbit 
emanates the separatrix 
manifold which is the border 
between the plunging and 
the bounded orbits.
x is a Lyapunov orbit.
 

x

x: denotes an unstable periodic orbit 
which for proper energy and angular 
momentum becomes the Innermost 
Stable Circular Orbit ISCO. 



17

The x factor in MN

x

For MN from “x” emanate the 
asymptotic manifolds, the structure 
of chaos underneath the 
phenomenology of scattered 
points.
The x is not a Lyapunov orbit. x
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A simplistic “dust”
 accretion disk model

We suppose a accretion disk consisted from a 
noninteracting collisionless “test” particle fluid. 

The accretion disk particles “share” a constant angular 
momentum  L

z
 and loose for an “unknown” reason 

energy E.     

The particles move approximately along geodesic orbits.

An approximation to the final stage of accreting matter 
around a “bumpy” black hole or of a black hole 
background perturbed by the accreting matter itself. 
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 CZV for different E

Reducing energy
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The final countdown
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Phase Transition from order to 
escaping chaos 

The percentage of test 
particles following the 
chaotic plunging geodesic 
orbits as energy reduces.  

If there is a MN compact 
object, the vertical outflow 
of matter should be visible 
at certain electromagnetic 
wavelengths 
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Thank you!
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