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In the case of extreme mass ratio inspirals (EMRI) systems
there are mainly two reasons for studying “bumpy” black
hole (non-integrable) spacetime backgrounds:

1) To take into account the perturbation of the supermassive
black hole (SMBH) spacetime due to the accreting matter.

2) To check whether the super massive objects at the centre
of galaxies are indeed black holes.
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Weyl-Papapetrou metric element in prolate spheroidal coordinates:
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From the prolate spheroidal coordinates (x,y) of the Weyl-
Papapetrou metric to the Boyer-Lindquist (r,0):

r=x (M2-(S/M)2)"2+M, cos 8=y, where x € [1,=), y € [-1,1]

By the above transformation the Kerr
event horizon lies on x=1. W s

From the prolate spheroidal coordinates
(x,y) of the Weyl-Papapetrou metric to L T S
the cylindrical (p,z): ~J |

p = f{\/{-\‘z — 1)(1 — y?), z = kxy




In the generic case of stationary and axisymmetric spacetime
background, the energy E and the azimuthal angular momentum

| L_are constants of motion:
L= 5 i’ | o | .
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Each bounded geodesic is labelled by the

3 fundamental frequencies w , w,, W, ;



The Kerr metric has the “extra” integral of motion, the Carter
constant Q. carter, PR (1968)

Though the Hamiltonian has not been yet expressed in
action-angle variables, the characteristic frequencies
w, w, w, were found "analytically” as functions of:

the black hole spin a and mass M,
the constants of motion (E, L , Q) and /
the geometrical characteristics of the orbit
(turning points of r and 6). schmidt, cQG (2002)

The ratio v,(E,L )= w/w, seems to be strictly monotonic

function along a foliation of invariant tori. (numerical
indications, not proven!)



Consider a weak perturbation of a Kerr background that

“breaks” the Carter constant, but leaves the background

stationary and axisymmetric, e.g. a compact object more
prolate or oblate than Kerr black hole.

HNew=HKerr+q HPerturbation (q<<)

By the two remaining integrals of motion E, L, we can reduce

the number of degrees of freedom from 4 to 2, i.e. instead of 4
coupled ODEs we can study 2 coupled ODEs.

D";'/\ A A . . L
ODES DT =" rl,uf.f'!'“'rl =0

Thus, we restrict the motion and the dynamics on the meridian
plane ( (r,0) Boyer-Lindquist, (p,z) Weyl-Papapetrou).
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If the perturbation is weak enough, then most of the
non-resonant tori survive (KAM theorem)
and the resonant tori transform into the Birkhoff chain
(Poincare-Birkhoff theorem).

Resonance condition:

i "El'w'f'.l =0, k; € Z, |’t' — i |L-'| I U . n=2
i=1 i=1



= [a~] '
T I T T T T T T T T T T I T T T I T
% E

4 6 L] 10 12
il

Curve of
Zero
Velocity
(CZV)

z=0,
dz/dT>0

14

=

)
M
W

i\
%)
o

[

v
)
&

o

oy

"f *
A/
g
_.l."‘.‘“ -

i
)
A

|
Al
i
II J‘

4 6 8 10 12

14

0.4 |-

0. |1
‘."’~.| )
ORIV
!'.
~04 |
v b b v Py
0.8 1.2 1.6 2.
]_)
25 w

_3;"\“.:"\.'\.\\.\\l\\.}\I\|IIL|I.I:

0.8 1. 1.2 14 1.6 1.8 2.
p




0.2

We modified the rates of

. o7k | energy and angular
0.1F - - ] momentum loss proposed
: : - ] by Gair & Glampedakis
] ] os b 0.672 : (PRD, 2006) for a Kerr
2 0.F 1 = 0.67 23 / ] black hole according to
: ] /vees) 77 [ |{ the prescription given in
- - b/ 0666 . Gair, Li & Mandel, PRD
~0.1F . 0.5 /”3 ll'.ﬁﬁ-l/ (2008) :
: ] 0.662 ] E(t) = E0) + dE !
g ] 3.95 4 4.05 41 415 dt o
—0.2 T [ T | Ty | T, | | T, | K i
2 14 2 3 5 6 7 8 - ., AL,
“ L(1)=L.(0)+—1| t
pM () = L0 dr |o
200000 - 0.75 U The unit of
RN | timetis
The adiabatic . ™™ : N\ | 5 MM, ps.
approximation 3 1000000 0.7 \\ I I 13 reso_nancesun
(radiation 1 I - | N | | that endures
. 5(]000_— ? g - ‘ | | _
reaction :\\ e [N I A 1 At=510* M
included) Y. P RN | \ 1 corresponds
4.14 4.16 418 el | I\ | approximately
PO I | |\ | toaweek.
Apostolatos, L-G & Contopoulos, PRL (2009) i \
L-G, Apostolatos & Contopoulos, PRD (2010) L o L N e
Contopoulos, L-G & Apostolatos, 1)BC (2011) 0 200000 400000

t /M



TTTTTTTTTTTTT TTTTTTTTTTTTT TTTTT ITTTTT
L

0.004

' / The stickiness concerns
[ chaotic orbits which for
2/7 f . various reasons stick
] for a long time interval

: in a region, close to an
1§ invariant curve, so that

] their behaviour may
» |3 resemble that of
0.268 2.2607 2.2611 regular orbits, before

I NS PR TN = .
376 3263 > 57 extending further away.

piM

0.292

0.002

0.284 J |
0.286
0276 0284}
0.282

Vg

-0.002

—-0.004

[R]
(]
N
Ln

Contopoulos, Order and
Chaos in Dynamical
Astronomy, Springer (2002)
S(w) S(w)

chaos

I|||| il | | Jf""l" I|
|"f II'I|II*I['rtl'||"t'l|“|| I

oLl |1|| 1\

w w
L-G, Apostolatos & Contopoulos, PRD (2010)



Zipoy, JMP (1966) Voorhees, PRD (1970) Manko, Sanabria-Gémez, Manko, PRD (2000)

0.05

P

=005

0.00 1

0.004

0.002

—=0.002

—0.004

7.50

metric

0.10]

0.05 |

Fi}

0.00

~0.05 | %

=0.10 I

_p

Seyrich, L-G, in preparation

L-G, arXiv:1206.0660: 12



The resonance and the stickiness effect are generic
characteristic of the geodesic motion in any non-
iIntegrable Hamiltonian describing a stationary and
axisymmetric background, i.e. in any (weak) perturbation
of Kerr spacetime which remains stationary and
axisymmetric.

These phenomena should be taken into account when
templates are produced for EMRI systems.
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Part two:
Final stages of accretion onto
bumpy black holes

G. Contopoulos, M. Harsoula and G. L-G,
“Periodic Orbits and Escapes in Dynamical Systems”,
Celestial Mechanics and Dynamical Astronomy (2012)

arXiv:1203.1010
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Bambi & Barausse
(PRD, 2011)

Here MN is the class of the
Manko-Novikov (CQG, 1992)
metric family introduced by
Gair, Li & Mandel, PRD (2008).

The MN metric deviates from
the Kerr metric by a parameter:

q= (QH err LI:'.-".MS |

Innermost Stable
Circular Orbit (ISCO)

The accreton process in our MN spacetimes can be
qualitatively different than in a Kerr spacetime. In particu-
lar, we find that when the accreting gas reaches the ISCO
(i.e. the inner edge of the Novikov-Thorne disk model)
there are four qualitatively different possibilities:

(1)

(2)

(3)

(4)

The I5CO 1s radially unstable, and the gas plunges

into the compact object remaining roughly on the
equatorial plane. This 1s the same scenario as in the
Kerr case.

The ISCO 15 radially unstable and the gas plunges,

but does not reach the compact object. Instead, it
gets trapped between the object and the I1SCO and
forms a thick disk.

The I15CO 1s vertically unstable, and the gas plunges

into the compact object outside the equatonal plane.

The 15CO 1s vertically unstable and the gas plunges,

but does not reach the compact object. Instead, 1t
gets rapped between the object and the I1SCO and
forms two thick disks, above and below the equato-
rial plane.



%(;}3 + 27) + Vegl(p, 2) = 0,

__1,—2 2 L _ ;2
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X: denotes an unstable periodic orbit
which for proper energy and angular
momentum becomes the Innermost

Stable Circular Orbit ISCO.
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In the case of the Kerr
metric from the “x” orbit
emanates the separatrix
manifold which is the border
between the plunging and
the bounded orbits. 0
X is a Lyapunov orbit.
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For MN from “x” emanate the

asymptotic manifolds, the structure

of chaos underneath the
phenomenology of scattered
points.

The x is not a Lyapunov orbit.
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We suppose a accretion disk consisted from a
noninteracting collisionless “test” particle fluid.

The accretion disk particles “share” a constant angular
momentum L_and loose for an "unknown” reason

energy E.
The particles move approximately along geodesic orbits.
An approximation to the final stage of accreting matter

around a “bumpy” black hole or of a black hole
background perturbed by the accreting matter itself.
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C Outer Boundary (MIB)

- r|||| T TR T T T IT I T I I eI TrrerToT

L oo i ||||llII |_|||._‘.

C
H‘. 4—:|I.'Il"'
6 i)
- i
47 2
21 g '
0] a0

Inner Boundary

1/1 T 0.72 .

=1 i FETATYTRCSTITRAINTY (NS STTTRTTTTIRI ITITETTITIRTITI TN Vi A s e e litaaid

] Lor
0,72 074 0.76 0.7 0.74 .76 .78 O | TN T T R R | Lo
0.189 0.19 0.191 0.192

E

¥ P

FITTFTRTATITTITITT

TITTIETITITITIiTeraaarIrieTm TATETFETTNdrs[rin
: -

NN

ETrTrTr T rr T T T T 17T 1T T 10T 17T T T T T T 1T T 7

=y
L |

1 g, ]

o "y J

- h I -
3_ 1 T

LN R R NN R RN NNANNRSNREINNNERERER)

| SSRE TT T T  T T T T TH
-0.5

0.6 065 0.7 075 0.8

4L .:,.\- 1 -,--_-: .:.
1/2 (RS P Vi gl
Dovaprer v anal e nd pliiosnriar el ot ined p

0.74 0.76 0.78 0.74 0.76 0.78

0.193

20



llﬂllllélllléllllé IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII H
0.8 R ]
L 4 _
L . _
L \ i
= 0.6 .
z - _
S t ]
g [ L
Z [}.4_ -
- I. —
0L ]
O, B o oo b i
0.177 0.18 0.183 0.186 0.189 0.192

E

The percentage of test
particles following the
chaotic plunging geodesic
orbits as energy reduces.

If there is a MN compact
object, the vertical outflow
of matter should be visible
at certain electromagnetic
wavelengths
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