# Parity Violating Hydrodynamics in 2+1 Dimensions 

René Meyer

Department of Physics, University of Crete, Heraklion, Greece
June 22, 2012
K. Jensen, M. Kaminski, P. Kovtun, R.M., A. Ritz, A. Yarom,

JHEP 1205 (2012) 102 (arXiv:1112.4498 [hep-th]) arXiv:1203.3556 [hep-th]
(see also [S. Minwalla etal. 1203.3544] )

Why Parity Breaking Transport?

## Why Parity Breaking Transport?

- Parity Violation $\rightarrow$ New Transport Phenomena


## Why Parity Breaking Transport?

- Parity Violation $\rightarrow$ New Transport Phenomena
- Chiral Magnetic/Vortical Effects in (3+1)D, Anomalies



## Why Parity Breaking Transport?

- Parity Violation $\rightarrow$ New Transport Phenomena
- Chiral Magnetic/Vortical Effects in (3+1)D, Anomalies

- (2+1)D: (A)HE? ?????



## Why Parity Breaking Transport?

- Parity Violation $\rightarrow$ New Transport Phenomena
- Chiral Magnetic/Vortical Effects in (3+1)D, Anomalies

- (2+1)D: (A)HE? ?????

- AdS/CFT $\Rightarrow$ Response of Black Hole Horizons $\&$ QNMs


## Hydrodynamics

- Intrinsic Scale $\ell_{m f p}$ in interacting systems

[Pics by Amos Yarom]


## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description


$$
L \gg \ell_{\operatorname{mfp}}
$$

## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:



## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature


$$
L \gg \ell_{\operatorname{mfp}}
$$

p

## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature $\mu\left(x^{\mu}\right)$ Chemical Potentials

$L \gg \ell_{\mathrm{mfp}}$


## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature
$\mu\left(x^{\mu}\right)$ Chemical Potentials
$u^{\nu}\left(x^{\mu}\right)$ Velocity


$$
L \gg \ell_{\operatorname{mfp}}
$$

## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature
$\mu\left(x^{\mu}\right)$ Chemical Potentials $u^{\nu}\left(x^{\mu}\right)$ Velocity
- Local Thermal Equilibrium

$L \gg \ell_{\operatorname{mfp}}$


## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature
$\mu\left(x^{\mu}\right)$ Chemical Potentials
$u^{\nu}\left(x^{\mu}\right)$ Velocity
- Local Thermal Equilibrium $\epsilon\left(x^{\mu}\right)$ Energy density $\epsilon=T^{00}$

$L \gg \ell_{\operatorname{mpp}}$


## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature $\mu\left(x^{\mu}\right)$ Chemical Potentials

$L \gg \ell_{\operatorname{mpp}}$
- Local Thermal Equilibrium $\epsilon\left(x^{\mu}\right)$ Energy density $\epsilon=T^{00}$ $\rho\left(x^{\mu}\right)$ Charge density $\rho=J^{0}$


## Hydrodynamics

- Intrinsic Scale $\ell_{\text {mfp }}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature
$\mu\left(x^{\mu}\right)$ Chemical Potentials
$u^{\nu}\left(x^{\mu}\right)$ Velocity

- Local Thermal Equilibrium
$\epsilon\left(x^{\mu}\right)$ Energy density $\epsilon=T^{00}$
$\rho\left(x^{\mu}\right)$ Charge density $\rho=J^{0}$
$P\left(x^{\mu}\right)$ Pressure $P=T^{i i}$


## Hydrodynamics

- Intrinsic Scale $\ell_{m f p}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature
$\mu\left(x^{\mu}\right)$ Chemical Potentials
$u^{\nu}\left(x^{\mu}\right)$ Velocity

- Local Thermal Equilibrium
$\epsilon\left(x^{\mu}\right)$ Energy density $\epsilon=T^{00}$
$\rho\left(x^{\mu}\right)$ Charge density $\rho=J^{0}$
$P\left(x^{\mu}\right)$ Pressure $P=T^{i i}$
$s\left(x^{\mu}\right)$ Entropy density $s=J_{s}^{0}$


## Hydrodynamics

- Intrinsic Scale $\ell_{m f p}$ in interacting systems
- Equilibration on scales $L \gg \ell_{m f p}$ $\rightarrow$ Continuum description
- Local State Variables:
$T\left(x^{\mu}\right)$ Temperature
$\mu\left(x^{\mu}\right)$ Chemical Potentials
$u^{\nu}\left(x^{\mu}\right)$ Velocity
- Local Thermal Equilibrium
$\epsilon\left(x^{\mu}\right)$ Energy density $\epsilon=T^{00}$
$\rho\left(x^{\mu}\right)$ Charge density $\rho=J^{0}$
$P\left(x^{\mu}\right)$ Pressure $P=T^{i i}$
$s\left(x^{\mu}\right)$ Entropy density $s=J_{s}^{0}$
$d \epsilon=T d s+\mu d \rho$ 1st Law
$\epsilon+P=s T+\mu \rho$ Euler


$$
L \gg \ell_{\operatorname{mfp}}
$$

## Hydrodynamics

- State Variables of Hydro Flows: $T\left(x^{\nu}\right), \mu\left(x^{\nu}\right), u^{\mu}\left(x^{\nu}\right)$


## Hydrodynamics

- State Variables of Hydro Flows: $T\left(x^{\nu}\right), \mu\left(x^{\nu}\right), u^{\mu}\left(x^{\nu}\right)$
- Thermodynamics $d P=s d T+\rho d \mu, \quad \epsilon+P=s T+\mu \rho$


## Hydrodynamics

- State Variables of Hydro Flows: $T\left(x^{\nu}\right), \mu\left(x^{\nu}\right), u^{\mu}\left(x^{\nu}\right)$
- Thermodynamics $d P=s d T+\rho d \mu, \quad \epsilon+P=s T+\mu \rho$
- Relativistic Hydrodynamics: Conservation Laws

$$
\nabla_{\mu} T^{\mu \nu}=F^{\nu \rho} J_{\rho}, \quad \nabla_{\mu} J^{\mu}=0
$$

## Hydrodynamics

- State Variables of Hydro Flows: $T\left(x^{\nu}\right), \mu\left(x^{\nu}\right), u^{\mu}\left(x^{\nu}\right)$
- Thermodynamics $d P=s d T+\rho d \mu, \quad \epsilon+P=s T+\mu \rho$
- Relativistic Hydrodynamics: Conservation Laws

$$
\nabla_{\mu} T^{\mu \nu}=F^{\nu \rho} J_{\rho}, \quad \nabla_{\mu} J^{\mu}=0
$$

- Constitutive Relations:

$$
T^{\mu \nu}=\epsilon u^{\mu} u^{\nu}+P\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right)+\pi^{\mu \nu}, \quad J^{\mu}=\rho \boldsymbol{u}^{\mu}+\nu^{\mu}
$$

## Hydrodynamics

- State Variables of Hydro Flows: $T\left(x^{\nu}\right), \mu\left(x^{\nu}\right), u^{\mu}\left(x^{\nu}\right)$
- Thermodynamics $d P=s d T+\rho d \mu, \quad \epsilon+P=s T+\mu \rho$
- Relativistic Hydrodynamics: Conservation Laws

$$
\nabla_{\mu} T^{\mu \nu}=F^{\nu \rho} J_{\rho}, \quad \nabla_{\mu} J^{\mu}=0
$$

- Constitutive Relations:

$$
T^{\mu \nu}=\epsilon u^{\mu} u^{\nu}+P\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right)+\pi^{\mu \nu}, \quad J^{\mu}=\rho u^{\mu}+\nu^{\mu}
$$

- Out of Equilibrium $\rightarrow$ Derivative Expansion


## Hydrodynamics

- State Variables of Hydro Flows: $T\left(x^{\nu}\right), \mu\left(x^{\nu}\right), u^{\mu}\left(x^{\nu}\right)$
- Thermodynamics $d P=s d T+\rho d \mu, \quad \epsilon+P=s T+\mu \rho$
- Relativistic Hydrodynamics: Conservation Laws

$$
\nabla_{\mu} T^{\mu \nu}=F^{\nu \rho} J_{\rho}, \quad \nabla_{\mu} J^{\mu}=0
$$

- Constitutive Relations:

$$
T^{\mu \nu}=\epsilon u^{\mu} u^{\nu}+P\left(u^{\mu} u^{\nu}+g^{\mu \nu}\right)+\pi^{\mu \nu}, \quad J^{\mu}=\rho u^{\mu}+\nu^{\mu}
$$

- Out of Equilibrium $\rightarrow$ Derivative Expansion
- Local form of the 2nd Law of thermodynamics:

$$
\frac{d S}{d t}+\int \vec{S} \cdot d \vec{a} \geq 0
$$

## Entropy Current Construction I

- Goal : Construct most general dissipative corrections to $O\left(\partial^{1}\right)$ allowing for parity breaking
- A complete basis of 1-derivative terms


## Entropy Current Construction I

- Goal : Construct most general dissipative corrections to $O\left(\partial^{1}\right)$ allowing for parity breaking
- A complete basis of 1-derivative terms

$$
\begin{aligned}
T^{\mu \nu}= & \epsilon u^{\mu} u^{\nu}+\left(P-\tilde{\chi}_{B} B-\tilde{\chi}_{\Omega} \Omega-\zeta \nabla_{\mu} u^{\mu}\right) \Delta^{\mu \nu}+\pi^{\mu \nu} \\
J^{\mu}= & \rho u^{\mu}+\nu^{\mu}, \quad \pi^{\mu \nu}=-\eta \sigma^{\mu \nu}-\eta_{H} \tilde{\sigma}^{\mu \nu} \\
\nu^{\mu}= & \sigma\left(E^{\mu}-T \Delta^{\mu \nu} \nabla_{\nu} \frac{\mu}{T}\right)+\chi_{E} E^{\mu}+\chi_{T} \Delta^{\mu \nu} \nabla_{\nu} T+ \\
& {\left[\tilde{\sigma} \epsilon^{\mu \nu \rho} u_{\nu}\left(E_{\rho}-T \nabla_{\rho} \frac{\mu}{T}\right)+\tilde{\chi}_{E} \tilde{E}^{\mu}+\tilde{\chi}_{T} \epsilon^{\mu \nu \rho} u_{\nu} \nabla_{\rho} T\right] }
\end{aligned}
$$

## Entropy Current Construction I

- Goal : Construct most general dissipative corrections to $O\left(\partial^{1}\right)$ allowing for parity breaking
- A complete basis of 1-derivative terms

$$
\begin{aligned}
T^{\mu \nu}= & \epsilon u^{\mu} u^{\nu}+\left(P-\tilde{\chi}_{B} B-\tilde{\chi}_{\Omega} \Omega-\zeta \nabla_{\mu} u^{\mu}\right) \Delta^{\mu \nu}+\pi^{\mu \nu} \\
J^{\mu}= & \rho u^{\mu}+\nu^{\mu}, \quad \pi^{\mu \nu}=-\eta \sigma^{\mu \nu}-\eta_{H} \tilde{\sigma}^{\mu \nu} \\
\nu^{\mu}= & \sigma\left(E^{\mu}-T \Delta^{\mu \nu} \nabla_{\nu} \frac{\mu}{T}\right)+\chi_{E} E^{\mu}+\chi_{T} \Delta^{\mu \nu} \nabla_{\nu} T+ \\
& {\left[\tilde{\sigma} \epsilon^{\mu \nu \rho} u_{\nu}\left(E_{\rho}-T \nabla_{\rho} \frac{\mu}{T}\right)+\tilde{\chi}_{E} \tilde{E}^{\mu}+\tilde{\chi}_{T} \epsilon^{\mu \nu \rho} u_{\nu} \nabla_{\rho} T\right] }
\end{aligned}
$$

- External magnetic field and vorticity at $\mathcal{O}\left(\partial^{1}\right)$

$$
B=-\frac{1}{2} \epsilon^{\mu \nu \rho} u_{\mu} F_{\nu \rho}, \quad \Omega=-\epsilon^{\mu \nu \rho} u_{\mu} \nabla_{\nu} u_{\rho}
$$

## Entropy Current Construction I

- Goal : Construct most general dissipative corrections to $O\left(\partial^{1}\right)$ allowing for parity breaking
- A complete basis of 1-derivative terms

$$
\begin{aligned}
T^{\mu \nu}= & \epsilon u^{\mu} u^{\nu}+\left(P-\tilde{\chi}_{B} B-\tilde{\chi}_{\Omega} \Omega-\zeta \nabla_{\mu} u^{\mu}\right) \Delta^{\mu \nu}+\pi^{\mu \nu} \\
J^{\mu}= & \rho u^{\mu}+\nu^{\mu}, \quad \pi^{\mu \nu}=-\eta \sigma^{\mu \nu}-\eta_{H} \tilde{\sigma}^{\mu \nu} \\
\nu^{\mu}= & \sigma\left(E^{\mu}-T \Delta^{\mu \nu} \nabla_{\nu} \frac{\mu}{T}\right)+\chi_{E} E^{\mu}+\chi_{T} \Delta^{\mu \nu} \nabla_{\nu} T+ \\
& {\left[\tilde{\sigma} \epsilon^{\mu \nu \rho} u_{\nu}\left(E_{\rho}-T \nabla_{\rho} \frac{\mu}{T}\right)+\tilde{\chi}_{E} \tilde{E}^{\mu}+\tilde{\chi}_{T} \epsilon^{\mu \nu \rho} u_{\nu} \nabla_{\rho} T\right] }
\end{aligned}
$$

- External magnetic field and vorticity at $\mathcal{O}\left(\partial^{1}\right)$

$$
B=-\frac{1}{2} \epsilon^{\mu \nu \rho} u_{\mu} F_{\nu \rho}, \quad \Omega=-\epsilon^{\mu \nu \rho} u_{\mu} \nabla_{\nu} u_{\rho}
$$

- Parity Even: Conductivity $\sigma$, Viscosities $\eta, \zeta$, and $\chi_{E}, \chi_{T}$


## Entropy Current Construction I

- Goal : Construct most general dissipative corrections to $O\left(\partial^{1}\right)$ allowing for parity breaking
- A complete basis of 1-derivative terms

$$
\begin{aligned}
T^{\mu \nu}= & \epsilon u^{\mu} u^{\nu}+\left(P-\tilde{\chi}_{B} B-\tilde{\chi}_{\Omega} \Omega-\zeta \nabla_{\mu} u^{\mu}\right) \Delta^{\mu \nu}+\pi^{\mu \nu} \\
J^{\mu}= & \rho u^{\mu}+\nu^{\mu}, \quad \pi^{\mu \nu}=-\eta \sigma^{\mu \nu}-\eta_{H} \tilde{\sigma}^{\mu \nu} \\
\nu^{\mu}= & \sigma\left(E^{\mu}-T \Delta^{\mu \nu} \nabla_{\nu} \frac{\mu}{T}\right)+\chi_{E} E^{\mu}+\chi_{T} \Delta^{\mu \nu} \nabla_{\nu} T+ \\
& {\left[\tilde{\sigma} \epsilon^{\mu \nu \rho} u_{\nu}\left(E_{\rho}-T \nabla_{\rho} \frac{\mu}{T}\right)+\tilde{\chi}_{E} \tilde{E}^{\mu}+\tilde{\chi}_{T} \epsilon^{\mu \nu \rho} u_{\nu} \nabla_{\rho} T\right] }
\end{aligned}
$$

- External magnetic field and vorticity at $\mathcal{O}\left(\partial^{1}\right)$

$$
B=-\frac{1}{2} \epsilon^{\mu \nu \rho} u_{\mu} F_{\nu \rho}, \quad \Omega=-\epsilon^{\mu \nu \rho} u_{\mu} \nabla_{\nu} u_{\rho}
$$

- Parity Even: Conductivity $\sigma$, Viscosities $\eta, \zeta$, and $\chi_{E}, \chi_{T}$
- Parity Odd: Hall Viscosity $\eta_{H}$, P-odd conductivity $\tilde{\sigma}$, Four thermodynamic response parameters $\tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{B}, \tilde{\chi}_{\Omega}$


## Entropy Current Construction II

- Local Form of Second Law of Thermodynamics

$$
J_{s}^{\mu}=s u^{\mu}+\mathcal{O}(\partial) \quad \text { s.t. } \quad \nabla_{\mu} J_{s}^{\mu} \geq 0
$$

## Entropy Current Construction II

- Local Form of Second Law of Thermodynamics

$$
J_{s}^{\mu}=s u^{\mu}+\mathcal{O}(\partial) \quad \text { s.t. } \quad \nabla_{\mu} J_{s}^{\mu} \geq 0
$$

- Unrestricted coefficients:

$$
(\eta, \zeta, \sigma) \geq 0, \quad\left(\tilde{\sigma}, \eta_{H}\right) \in \mathbb{R}, \quad \chi_{E}=\chi_{T}=0
$$

## Entropy Current Construction II

- Local Form of Second Law of Thermodynamics

$$
J_{s}^{\mu}=s u^{\mu}+\mathcal{O}(\partial) \quad \text { s.t. } \quad \nabla_{\mu} J_{s}^{\mu} \geq 0
$$

- Unrestricted coefficients:

$$
(\eta, \zeta, \sigma) \geq 0, \quad\left(\tilde{\sigma}, \eta_{H}\right) \in \mathbb{R}, \quad \chi_{E}=\chi_{T}=0
$$

- Thermodynamic Response Parameters:

Magnetizations $\mathcal{M}_{B}(\mu, T), \mathcal{M}_{\Omega}(\mu, T)$

## Entropy Current Construction II

- Local Form of Second Law of Thermodynamics

$$
J_{s}^{\mu}=s u^{\mu}+\mathcal{O}(\partial) \quad \text { s.t. } \quad \nabla_{\mu} J_{s}^{\mu} \geq 0
$$

- Unrestricted coefficients:

$$
(\eta, \zeta, \sigma) \geq 0, \quad\left(\tilde{\sigma}, \eta_{H}\right) \in \mathbb{R}, \quad \chi_{E}=\chi_{T}=0
$$

- Thermodynamic Response Parameters:

Magnetizations $\mathcal{M}_{B}(\mu, T), \mathcal{M}_{\Omega}(\mu, T)$

$$
\begin{aligned}
\tilde{\chi}_{B} & =\frac{\partial P}{\partial \epsilon}\left(T \frac{\partial \mathcal{M}_{B}}{\partial T}+\mu \frac{\partial \mathcal{M}_{B}}{\partial \mu}-\mathcal{M}_{B}\right)+\frac{\partial P}{\partial \rho} \frac{\partial \mathcal{M}_{B}}{\partial \mu} \\
\tilde{\chi}_{\Omega} & =\frac{\partial P}{\partial \epsilon}\left(T \frac{\partial \mathcal{M}_{\Omega}}{\partial T}+\mu \frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-2 \mathcal{M}_{\Omega}\right)+\frac{\partial P}{\partial \rho}\left(\frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-\mathcal{M}_{B}\right) \\
\tilde{\chi}_{E} & =\frac{\partial \mathcal{M}_{B}}{\partial \mu}-\frac{\rho}{\epsilon+P}\left(\frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-\mathcal{M}_{B}\right) \\
T_{\chi} \tilde{\chi}_{T} & =\left(T \frac{\partial \mathcal{M}_{B}}{\partial T}+\mu \frac{\partial \mathcal{M}_{B}}{\partial \mu}-\mathcal{M}_{B}\right)-\frac{\rho}{\epsilon+P}\left(T \frac{\partial \mathcal{M}_{\Omega}}{\partial T}+\mu \frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-2 \mathcal{M}_{\Omega}\right)
\end{aligned}
$$

## Entropy Current Construction II

- Local Form of Second Law of Thermodynamics

$$
J_{s}^{\mu}=s u^{\mu}+\mathcal{O}(\partial) \quad \text { s.t. } \quad \nabla_{\mu} J_{s}^{\mu} \geq 0
$$

- Unrestricted coefficients:

$$
(\eta, \zeta, \sigma) \geq 0, \quad\left(\tilde{\sigma}, \eta_{H}\right) \in \mathbb{R}, \quad \chi_{E}=\chi_{T}=0
$$

- Thermodynamic Response Parameters:

Magnetizations $\mathcal{M}_{B}(\mu, T), \mathcal{M}_{\Omega}(\mu, T)$

$$
\begin{aligned}
\tilde{\chi}_{B} & =\frac{\partial P}{\partial \epsilon}\left(T \frac{\partial \mathcal{M}_{B}}{\partial T}+\mu \frac{\partial \mathcal{M}_{B}}{\partial \mu}-\mathcal{M}_{B}\right)+\frac{\partial P}{\partial \rho} \frac{\partial \mathcal{M}_{B}}{\partial \mu} \\
\tilde{\chi}_{\Omega} & =\frac{\partial P}{\partial \epsilon}\left(T \frac{\partial \mathcal{M}_{\Omega}}{\partial T}+\mu \frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-2 \mathcal{M}_{\Omega}\right)+\frac{\partial P}{\partial \rho}\left(\frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-\mathcal{M}_{B}\right) \\
\tilde{\chi}_{E} & =\frac{\partial \mathcal{M}_{B}}{\partial \mu}-\frac{\rho}{\epsilon+P}\left(\frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-\mathcal{M}_{B}\right) \\
T \tilde{\chi}_{T} & =\left(T \frac{\partial \mathcal{M}_{B}}{\partial T}+\mu \frac{\partial \mathcal{M}_{B}}{\partial \mu}-\mathcal{M}_{B}\right)-\frac{\rho}{\epsilon+P}\left(T \frac{\partial \mathcal{M}_{\Omega}}{\partial T}+\mu \frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-2 \mathcal{M}_{\Omega}\right)
\end{aligned}
$$

- N.B. Coupling to curved backgrounds crucial: \# $u^{\mu} u^{\nu} R_{\mu \nu}$


## Entropy Current Construction II

- Local Form of Second Law of Thermodynamics

$$
J_{s}^{\mu}=s u^{\mu}+\mathcal{O}(\partial) \quad \text { s.t. } \quad \nabla_{\mu} J_{s}^{\mu} \geq 0
$$

- Unrestricted coefficients:

$$
(\eta, \zeta, \sigma) \geq 0, \quad\left(\tilde{\sigma}, \eta_{H}\right) \in \mathbb{R}, \quad \chi_{E}=\chi_{T}=0
$$

- Thermodynamic Response Parameters:

Magnetizations $\mathcal{M}_{B}(\mu, T), \mathcal{M}_{\Omega}(\mu, T)$

$$
\begin{aligned}
\tilde{\chi}_{B} & =\frac{\partial P}{\partial \epsilon}\left(T \frac{\partial \mathcal{M}_{B}}{\partial T}+\mu \frac{\partial \mathcal{M}_{B}}{\partial \mu}-\mathcal{M}_{B}\right)+\frac{\partial P}{\partial \rho} \frac{\partial \mathcal{M}_{B}}{\partial \mu} \\
\tilde{\chi}_{\Omega} & =\frac{\partial P}{\partial \epsilon}\left(T \frac{\partial \mathcal{M}_{\Omega}}{\partial T}+\mu \frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-2 \mathcal{M}_{\Omega}\right)+\frac{\partial P}{\partial \rho}\left(\frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-\mathcal{M}_{B}\right) \\
\tilde{\chi}_{E} & =\frac{\partial \mathcal{M}_{B}}{\partial \mu}-\frac{\rho}{\epsilon+P}\left(\frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-\mathcal{M}_{B}\right) \\
T \tilde{\chi}_{T} & =\left(T \frac{\partial \mathcal{M}_{B}}{\partial T}+\mu \frac{\partial \mathcal{M}_{B}}{\partial \mu}-\mathcal{M}_{B}\right)-\frac{\rho}{\epsilon+P}\left(T \frac{\partial \mathcal{M}_{\Omega}}{\partial T}+\mu \frac{\partial \mathcal{M}_{\Omega}}{\partial \mu}-2 \mathcal{M}_{\Omega}\right)
\end{aligned}
$$

- N.B. Coupling to curved backgrounds crucial: \# $u^{\mu} u^{\nu} R_{\mu \nu}$
- Open Point: Lack of a derivation of $\mathcal{M}_{\Omega}=\frac{d P}{d \Omega}$


## Euclidean Generating Functional I

- $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$ are equilibrium properties


## Euclidean Generating Functional I

- $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$ are equilibrium properties
- For systems with finite static correlation length we can truncate momentum space correlators at a fixed number of momenta. $\Rightarrow$ Local Generating Functional in derivative expansion


## Euclidean Generating Functional I

- $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$ are equilibrium properties
- For systems with finite static correlation length we can truncate momentum space correlators at a fixed number of momenta. $\Rightarrow$ Local Generating Functional in derivative expansion
- Stationary background fields (w.r.t. Killing vector $V^{\mu}$ ) with small spatial variations generate the response needed to measure the thermodynamic response parameters .
$\Rightarrow$ Classify all $\mathcal{O}\left(\partial^{n}\right)$ scalars $s_{n}$ compatible with

$$
\mathcal{L}_{V}\left(T, \mu, u^{\mu}, g_{\mu \nu}, A_{\mu}\right)=0
$$

These are the non-dissipative thermal response parameters .

## Euclidean Generating Functional I

- $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$ are equilibrium properties
- For systems with finite static correlation length we can truncate momentum space correlators at a fixed number of momenta. $\Rightarrow$ Local Generating Functional in derivative expansion
- Stationary background fields (w.r.t. Killing vector $V^{\mu}$ ) with small spatial variations generate the response needed to measure the thermodynamic response parameters .
$\Rightarrow$ Classify all $\mathcal{O}\left(\partial^{n}\right)$ scalars $s_{n}$ compatible with

$$
\mathcal{L}_{V}\left(T, \mu, u^{\mu}, g_{\mu \nu}, A_{\mu}\right)=0
$$

These are the non-dissipative thermal response parameters.

- For parity violating (2+1)D hydrodynamics , there are

$$
\text { At } \mathcal{O}\left(\partial^{0}\right): T \text { and } \mu
$$

At $\mathcal{O}\left(\partial^{1}\right): B$ and $\Omega$

## Euclidean Generating Functional I

- $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$ are equilibrium properties
- For systems with finite static correlation length we can truncate momentum space correlators at a fixed number of momenta. $\Rightarrow$ Local Generating Functional in derivative expansion
- Stationary background fields (w.r.t. Killing vector $V^{\mu}$ ) with small spatial variations generate the response needed to measure the thermodynamic response parameters .
$\Rightarrow$ Classify all $\mathcal{O}\left(\partial^{n}\right)$ scalars $s_{n}$ compatible with

$$
\mathcal{L}_{V}\left(T, \mu, u^{\mu}, g_{\mu \nu}, A_{\mu}\right)=0
$$

These are the non-dissipative thermal response parameters .

- For parity violating (2+1)D hydrodynamics , there are

$$
\text { At } \mathcal{O}\left(\partial^{0}\right): T \text { and } \mu \quad \text { At } \mathcal{O}\left(\partial^{1}\right): B \text { and } \Omega
$$

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

## Euclidean Generating Functional II

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

## Euclidean Generating Functional II

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

- Matching the result to the constitutive relations in Landau frame reproduces the entropy current results for $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$.


## Euclidean Generating Functional II

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

- Matching the result to the constitutive relations in Landau frame reproduces the entropy current results for $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$.
- The setup seems very general [Minwalla etal 1203.3544].


## Euclidean Generating Functional II

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

- Matching the result to the constitutive relations in Landau frame reproduces the entropy current results for $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$.
- The setup seems very general [Minwalla etal 1203.3544].
- Existence of stationary flow implies existence of generating functional


## Euclidean Generating Functional II

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

- Matching the result to the constitutive relations in Landau frame reproduces the entropy current results for $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$.
- The setup seems very general [Minwalla etal 1203.3544].
- Existence of stationary flow implies existence of generating functional
- For $\mathcal{O}(\partial)$ metric and gauge backgrounds, such a flow always exists.


## Euclidean Generating Functional II

- Generating Functional to $\mathcal{O}\left(\partial^{1}\right)$ :

$$
W_{1}=\int d^{3} x \sqrt{-g}\left[P(T, \mu)+\mathcal{M}_{B}(T, \mu) B+\mathcal{M}_{\Omega}(T, \mu) \Omega\right]
$$

- Matching the result to the constitutive relations in Landau frame reproduces the entropy current results for $\tilde{\chi}_{B}, \tilde{\chi}_{E}, \tilde{\chi}_{T}, \tilde{\chi}_{\Omega}$.
- The setup seems very general [Minwalla etal 1203.3544].
- Existence of stationary flow implies existence of generating functional
- For $\mathcal{O}(\partial)$ metric and gauge backgrounds, such a flow always exists.
- Main Result:

The general (2+1)-dimensional parity violating fluid is parametrized by two magnetizations, $\mathcal{M}_{B}$ and $\mathcal{M}_{\Omega}$.

## Strongly Coupled Examples

## Strongly Coupled Examples

- Hall Viscosity

$$
S=S_{g r a v}[g, \theta]-\frac{\lambda}{4} \int d^{4} x \sqrt{-g} \theta(r) \epsilon^{\lambda \rho \alpha \beta} R_{\nu \alpha \beta}^{\mu} R^{\nu}{ }_{\mu \lambda \rho}
$$

Black brane Ansatz $d s^{2}=2 H(r) d v d r-r^{2} f(r) d v^{2}+r^{2} d x_{m} d x^{m}$

$$
\eta_{H}=-\left.\frac{\lambda}{8 \pi G_{N}} \frac{r^{4} f^{\prime}(r) \theta^{\prime}(r)}{4 H^{2}(r)}\right|_{r=r_{H}}
$$

## Strongly Coupled Examples

- Hall Viscosity

$$
S=S_{\text {grav }}[g, \theta]-\frac{\lambda}{4} \int d^{4} x \sqrt{-g} \theta(r) \epsilon^{\lambda \rho \alpha \beta} R^{\mu}{ }_{\nu \alpha \beta} R^{\nu}{ }_{\mu \lambda \rho}
$$

Black brane Ansatz $d s^{2}=2 H(r) d v d r-r^{2} f(r) d v^{2}+r^{2} d x_{m} d x^{m}$

$$
\eta_{H}=-\left.\frac{\lambda}{8 \pi G_{N}} \frac{r^{4} f^{\prime}(r) \theta^{\prime}(r)}{4 H^{2}(r)}\right|_{r=r_{H}}
$$

- Anomalous Hall Conductivity

$$
S=S_{\text {grav }}-\frac{1}{16 \pi G_{N}} \int d^{4} x \sqrt{-g} \frac{F^{2}}{4}-\frac{1}{64 \pi^{2}} \int \theta(\phi) F \wedge F
$$

A high temperature analytic solution [Yarom 0912.2100] reproduces, via Fluid-Gravity, the constitutive relations.

$$
\Rightarrow \text { Anomalous Hall Conductivity: } \tilde{\sigma}+\tilde{\chi} E=\frac{\theta\left(\phi\left(r_{h}\right)\right)}{8 \pi^{2}}
$$

## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$


## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$


## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$
- Generating functional for Euclidean correlators


## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$
- Generating functional for Euclidean correlators
- Open Points:


## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$
- Generating functional for Euclidean correlators
- Open Points:

1. How general is the generating functional construction? Counterexamples?

## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$
- Generating functional for Euclidean correlators
- Open Points:

1. How general is the generating functional construction? Counterexamples?
2. Further constraining $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$. It is known that $\mathcal{M}_{B}=\frac{d P}{d B}$ [Cooper \& Halperin \& Ruzin cond-mat/9607001] Can we show

$$
\mathcal{M}_{\Omega}=\frac{d P}{d \Omega} ?
$$

## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$
- Generating functional for Euclidean correlators
- Open Points:

1. How general is the generating functional construction? Counterexamples?
2. Further constraining $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$. It is known that $\mathcal{M}_{B}=\frac{d P}{d B}$ [Cooper \& Halperin \& Ruzin cond-mat/9607001] Can we show

$$
\mathcal{M}_{\Omega}=\frac{d P}{d \Omega} ?
$$

3. Experiments? Move beyond small $B, \Omega$ ?

## Conclusions

- Constructed the most general (2+1)D parity violating charged fluid dynamics in magnetic and vortical background fields of $\mathcal{O}\left(\partial^{1}\right)$
- Parameters: Two magnetizations $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$
- Generating functional for Euclidean correlators
- Open Points:

1. How general is the generating functional construction? Counterexamples?
2. Further constraining $\mathcal{M}_{B}, \mathcal{M}_{\Omega}$. It is known that $\mathcal{M}_{B}=\frac{d P}{d B}$ [Cooper \& Halperin \& Ruzin cond-mat/9607001] Can we show

$$
\mathcal{M}_{\Omega}=\frac{d P}{d \Omega} ?
$$

3. Experiments? Move beyond small $B, \Omega$ ?
THANK YOU!
