Acceleration in Weyl integrable spacetime

J. Miritzis, University of the Aegean

NEB 15, June 20-23, 2012 Chania

J. Miritzis, University of the Aegean ()

Acceleration in Weyl integrable spacetime

NEB 15, June 20-23, 2012 Chania 1 / 8

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The accelerated expansion of the universe leads to a variety of departures from the standard cosmology.

The accelerated expansion of the universe leads to a variety of departures from the standard cosmology.

• Dark energy of unknown nature is responsible for the accelerating expansion of the Universe.

The accelerated expansion of the universe leads to a variety of departures from the standard cosmology.

- Dark energy of unknown nature is responsible for the accelerating expansion of the Universe.
- General relativity requires a modification at cosmological distance scales.

< D > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P

The accelerated expansion of the universe leads to a variety of departures from the standard cosmology.

- Dark energy of unknown nature is responsible for the accelerating expansion of the Universe.
- General relativity requires a modification at cosmological distance scales.
- Less explored is the idea that the geometry of spacetime is not the so far assumed Riemannian geometry.

< D > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P

The accelerated expansion of the universe leads to a variety of departures from the standard cosmology.

- Dark energy of unknown nature is responsible for the accelerating expansion of the Universe.
- General relativity requires a modification at cosmological distance scales.
- Less explored is the idea that the geometry of spacetime is not the so far assumed Riemannian geometry.

Weyl geometry is considered as the most natural candidate for extending the Riemannian structure.

$$\nabla_{\mu}g_{\alpha\beta}=-Q_{\mu}g_{\alpha\beta},$$

Constrained variational principle

In [Cotsakis, JM, Querella, 1999] it was shown that a consistent way to incorporate an arbitrary connection into the dynamics of a gravity theory is the so-called constrained variational principle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constrained variational principle

In [Cotsakis, JM, Querella, 1999] it was shown that a consistent way to incorporate an arbitrary connection into the dynamics of a gravity theory is the so-called constrained variational principle.

The simplest theory that can be constructed with the constrained variational principle is obtained from the Lagrangian L = R. The field equations are, [JM 2004],

$$G_{(\mu\nu)} = -\nabla_{(\mu}Q_{\nu)} + Q_{\mu}Q_{\nu} + g_{\mu\nu}\left(\nabla^{\alpha}Q_{\alpha} - Q^{\alpha}Q_{\alpha}\right) =: M_{\mu\nu}.$$

< D > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P > < P

Constrained variational principle

In [Cotsakis, JM, Querella, 1999] it was shown that a consistent way to incorporate an arbitrary connection into the dynamics of a gravity theory is the so-called constrained variational principle.

The simplest theory that can be constructed with the constrained variational principle is obtained from the Lagrangian L = R. The field equations are, [JM 2004],

$$G_{(\mu\nu)} = -\nabla_{(\mu} Q_{\nu)} + Q_{\mu} Q_{\nu} + g_{\mu\nu} \left(\nabla^{\alpha} Q_{\alpha} - Q^{\alpha} Q_{\alpha} \right) =: M_{\mu\nu}.$$

Express the tensors $G_{(\mu\nu)}$ and $M_{\mu\nu}$ in terms of the quantities formed with the Levi-Civita connection *D*,

$$\overset{\circ}{G}_{\mu
u}=rac{3}{2}\left(\mathcal{Q}_{\mu}\mathcal{Q}_{
u}-rac{1}{2}\mathcal{Q}^{2}g_{\mu
u}
ight).$$

Bianchi identities imply

$$D^{\mu}Q_{\mu}=0.$$

In the case of integrable Weyl geometry, i.e., when $Q_{\mu} = \partial_{\mu}\phi$, the source term is that of a massless scalar field.

In the case of integrable Weyl geometry, i.e. when $Q_{\mu} = \partial_{\mu}\phi$ where ϕ is a scalar field, the pair $(\phi, g_{\mu\nu})$ constitute the set of fundamental geometrical variables.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

In the case of integrable Weyl geometry, i.e. when $Q_{\mu} = \partial_{\mu}\phi$ where ϕ is a scalar field, the pair $(\phi, g_{\mu\nu})$ constitute the set of fundamental geometrical variables.

$$L = R + \xi \nabla^{\mu} Q_{\mu} + L_m,$$

[Oliveira, Salim and Sautu 1997], [Konstantinov and Melnikov 1995]

In the case of integrable Weyl geometry, i.e. when $Q_{\mu} = \partial_{\mu}\phi$ where ϕ is a scalar field, the pair $(\phi, g_{\mu\nu})$ constitute the set of fundamental geometrical variables.

$$L = R + \xi \nabla^{\mu} Q_{\mu} + L_m,$$

[Oliveira, Salim and Sautu 1997], [Konstantinov and Melnikov 1995] Field equations:

$$\overset{\circ}{G}_{\mu\nu} = \frac{3-4\xi}{2} \left(\partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2} \left(\partial_{\alpha}\phi \partial^{\alpha}\phi \right) g_{\mu\nu} \right) + T_{\mu\nu},$$

and

$$\overset{\circ}{\Box}\phi = \frac{1}{3-4\xi}\rho,$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the case of integrable Weyl geometry, i.e. when $Q_{\mu} = \partial_{\mu}\phi$ where ϕ is a scalar field, the pair $(\phi, g_{\mu\nu})$ constitute the set of fundamental geometrical variables.

$$L = R + \xi \nabla^{\mu} Q_{\mu} + L_m,$$

[Oliveira, Salim and Sautu 1997], [Konstantinov and Melnikov 1995] Field equations:

$$\overset{\circ}{G}_{\mu\nu} = \frac{3-4\xi}{2} \left(\partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2} \left(\partial_{\alpha}\phi \partial^{\alpha}\phi \right) g_{\mu\nu} \right) + T_{\mu\nu},$$

and

$$\overset{\circ}{\Box}\phi = \frac{1}{3 - 4\xi}\rho,$$
$$\lambda = \frac{4\xi - 3}{2},$$

For $\lambda < 0$ the field equations are formally equivalent to the interaction of a massless scalar field coupled to a perfect fluid in general relativity.

J. Miritzis, University of the Aegean ()

Flat FRW models

$$\begin{split} p &= (\gamma - 1)\rho, \quad 0 \leq \gamma \leq 2, \\ H^2 &= \frac{1}{3}\rho - \frac{\lambda}{6}\dot{\phi}^2, \\ \dot{H} &= -\frac{\gamma}{2}\rho + \frac{\lambda}{2}\dot{\phi}^2, \\ \ddot{\phi} &+ 3H\dot{\phi} = -\frac{1}{2\lambda}\rho, \\ \dot{\rho} &= -3\gamma\rho H - \frac{1}{2}\rho\dot{\phi}. \end{split}$$

State vector: $(\dot{\phi}, \rho, H) \in \mathbb{R}^3$.

2

Introduce expansion-normalized variables

$$x = \frac{\dot{\phi}}{\sqrt{6}H}, \quad \Omega = \frac{\rho}{3H^2}, \quad \tau = \ln a.$$

$$x' = -3x - \sqrt{\frac{3}{2}} \frac{1}{2\lambda} \Omega + x \left(\frac{3\gamma}{2} \Omega - 3\lambda x^2\right),$$

$$\Omega' = \Omega \left(-3\gamma - \sqrt{\frac{3}{2}} x + 3\gamma \Omega - 6\lambda x^2\right),$$

The evolution of the Hubble function

$$H' = -H\left(\frac{3\gamma}{2}\Omega - 3\lambda x^2\right),\,$$

decouples from the rest of the evolution equations.

Introduce expansion-normalized variables

$$x = \frac{\dot{\phi}}{\sqrt{6}H}, \quad \Omega = \frac{\rho}{3H^2}, \quad \tau = \ln a.$$

$$x' = -3x - \sqrt{\frac{3}{2}} \frac{1}{2\lambda} \Omega + x \left(\frac{3\gamma}{2} \Omega - 3\lambda x^2\right),$$

$$\Omega' = \Omega \left(-3\gamma - \sqrt{\frac{3}{2}} x + 3\gamma \Omega - 6\lambda x^2\right),$$

The evolution of the Hubble function

$$H' = -H\left(\frac{3\gamma}{2}\Omega - 3\lambda x^2\right),\,$$

decouples from the rest of the evolution equations. Constraint:

$$\Omega = 1 + \lambda x^2.$$

One-dimensional dynamical system:

$$x' = -\sqrt{\frac{3}{2}}\frac{1}{2\lambda} + 3\left(\frac{\gamma}{2} - 1\right)x - \frac{1}{2}\sqrt{\frac{3}{2}}x^2 + 3\left(\frac{\gamma}{2} - 1\right)\lambda x^3.$$

2

ヘロト ヘアト ヘビト ヘビト

One-dimensional dynamical system:

$$x' = -\sqrt{\frac{3}{2}}\frac{1}{2\lambda} + 3\left(\frac{\gamma}{2} - 1\right)x - \frac{1}{2}\sqrt{\frac{3}{2}}x^2 + 3\left(\frac{\gamma}{2} - 1\right)\lambda x^3.$$

The only real equilibrium of this equation is

$$x_* = -\frac{1}{\sqrt{6}\left(2 - \gamma\right)\lambda}$$

 x_* is the future attractor of all solutions.

One-dimensional dynamical system:

$$x' = -\sqrt{\frac{3}{2}}\frac{1}{2\lambda} + 3\left(\frac{\gamma}{2} - 1\right)x - \frac{1}{2}\sqrt{\frac{3}{2}}x^2 + 3\left(\frac{\gamma}{2} - 1\right)\lambda x^3.$$

The only real equilibrium of this equation is

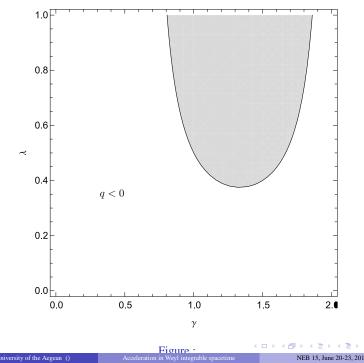
$$x_* = -\frac{1}{\sqrt{6}\left(2 - \gamma\right)\lambda}$$

 x_* is the future attractor of all solutions.

The decceleration parameter $q = -\ddot{a}a/\dot{a}^2$ at the equilibrium is given by

$$q_* = \frac{1 + 2\lambda \left(\gamma - 2\right) \left(3\gamma - 2\right)}{4\lambda \left(\gamma - 2\right)}.$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <



J. Miritzis, University of the Aegean ()