Zero point energy in cosmology

Ermis Mitsou

University of Geneva

in collaboration with Lukas Hollenstein, Maud Jaccard and Michele Maggiore

based on: 1104.3797 (Phys. <u>Lett. B 2012) and 1111.5575 (PRD 2012)</u>

Outline

Clarifying the (non-covariant) cut-off renormalization in FRW background

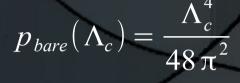
The equation of state of vacuum fluctuations

 Effective action and ultra-light fields (observable large scale quantum effects)

Cut-off regularization in Minkowski

$$\rho_{bare}(\Lambda_c) = \frac{\Lambda_c^4}{16 \pi^2}$$

 \bullet



$$p_{bare}(\Lambda_c) = \frac{1}{3} \rho_{bare}(\Lambda_c)$$

- Holds for <u>bare</u> quantities (not physical)
 - Normal since we broke Lorentz invariance

Choose <u>non-Lorentz invariant</u> counterterms to recover symmetry

 $p_{ren} = -\rho_{ren}$

Cut-off regularization in FRW

 $\rho_{bare}(\Lambda_c) = \frac{\Lambda_c^4}{16\pi^2} + \frac{\overline{H^2(t)\Lambda_c^2}}{16\pi^2} + O(H^4(t)\log(\Lambda_c))$

 $p_{bare}(\Lambda_{c}) = \frac{\Lambda_{c}^{4}}{48\pi^{2}} + C(t) \frac{H^{2}(t)\Lambda_{c}^{2}}{16\pi^{2}} + O(H^{4}(t)\log(\Lambda_{c}))$

 $C_{dS} = -\frac{1}{3}$ $C_{RD} = 1$ $C_{MD} = \frac{2}{3}$ \rightarrow $C(t) = w_{tot}(t) + \frac{2}{3}$

$$p_{bare}^{(4)}(\Lambda_c) = \frac{1}{3}\rho_{bare}^{(4)}(\Lambda_c) \qquad p_{bare}^{(2)}(\Lambda_c) = \left(w_{tot}(t) + \frac{2}{3}\right)\rho_{bare}^{(2)}(\Lambda_c)$$

- Again, this holds at the <u>bare</u> level (not physical)
- Here, it is general covariance that we broke
- Result: bare quantities <u>do not</u> satisfy energy momentum conservation

$$p_{bare}^{(4)}(\Lambda_c) = \frac{1}{3}\rho_{bare}^{(4)}(\Lambda_c) \qquad p_{bare}^{(2)}(\Lambda_c) = \left(w_{tot}(t) + \frac{2}{3}\right)\rho_{bare}^{(2)}(\Lambda_c)$$

 $\dot{\rho}_{bare} + 3H(\rho_{bare} + p_{bare}) \neq 0$

$$S_{count}^{(4)} = \int d^4 x \sqrt{-g} \Big(A(\Lambda_c) + B(\Lambda_c) g^{00} \Big)$$

$$\left(T^{(4)}_{\mu\nu}\right)_{count} = -\frac{2}{\sqrt{-g}} \frac{\delta S_{count}}{\delta g^{\mu\nu}} = A(\Lambda_c)g_{\mu\nu} + B(\Lambda_c)\left(g^{00}g_{\mu\nu} - 2\delta^0_{\mu}\delta^0_{\nu}\right)$$

$$\rho_{ren}^{(4)} = \rho_{bare}^{(4)} + \rho_{count}^{(4)} = \frac{\Lambda_c^4}{16\pi^2} - A(\Lambda_c) - B(\Lambda_c)$$
$$p_{ren}^{(4)} = p_{bare}^{(4)} + p_{count}^{(4)} = \frac{\Lambda_c^4}{48\pi^2} + A(\Lambda_c) - B(\Lambda_c)$$

We can thus choose A and B such that

$$p_{\it ren}^{(4)} = -
ho_{\it ren}^{(4)}$$

as imposed by E-M conservation (general covariance)

- The physical equation of state is thus "arbitrary"
- It would have been fixed in covariant regularizations
- We can fix it by imposing E-M conservation for the physical quantities

 \rightarrow same result as with covariant regularizations

$$p_{ren}^{(4)} = -\rho_{ren}^{(4)} \qquad p_{ren}^{(2)} = w_{tot}(t)\rho_{ren}^{(2)} \qquad p_{ren}^{(0)} = (1 + 2w_{tot}(t))\rho_{ren}^{(0)}$$

coincide to -1 only in de-Sitter phase!

Summary

- Non-covariant cut-off renormalization is not pathological in FRW
 - Covariance is retrieved at the renormalized level \rightarrow <u>same result</u> as with covariant regularization schemes
- → Renormalized quantities are <u>scheme</u> independent, as they should
- Equation of state is <u>not -1</u> in general

Effects on cosmology?

 Setting the scale of new physics to be Planck, the naturalness argument suggests

 $\rho_{ren}^{(4)} \sim M_{pl}^4 \qquad \rho_{ren}^{(2)} \sim H^2(t) M_{pl}^2 \sim \rho_c$

Because of covariant EOS, they correspond to

 $\sim \sqrt{-g} \qquad \sim \sqrt{-g} R$

terms in the action, respectively

→ Reabsorbed in Λ and G, respectively (CC problem) → <u>Do not</u> produce observable effects

Effects on cosmology?

There was an unrealistic assumption: The zero-point energy was the only matter content

In reality, other d.o.f. also present
 → vacuum energy <u>not</u> conserved in isolation

 This assumption is naturally relaxed in the context of effective field theory

Effective action point of view

 The effective action for gravity is the one where all matter has been integrated out

 $e^{-iS}_{eff}[g] = \int D\psi e^{-iS}[g,\psi]$

 The VEV of the E-M tensor is just the E-M tensor of the effective action (matter sector)

$$\langle 0|T_{\mu\nu}|0\rangle = \frac{\int D\psi T_{\mu\nu}[g,\psi]e^{-iS[g,\psi]}}{\int D\psi e^{-iS[g,\psi]}} = -\frac{2}{\sqrt{-g}}\frac{\delta}{\delta g^{\mu\nu}}S_{m,eff}[g]$$

But in the effective action point of view, we integrate out <u>only "heavy modes"</u> (compared to Hubble)

$$\omega_{k} = \sqrt{\frac{k^{2}}{a(t)^{2}} + m^{2}} \gg H(t)$$

so consider a scalar field Ψ with m << H(t)

• separate high and low frequency modes $\psi = \phi + \chi$

$$e^{-iS_{m,eff}[g,\chi]} = \int D\phi e^{-iS_m[g,\phi+\chi]} = e^{-i\int \sqrt{-g} d^4x \left(L_{eff}[\chi] + f(\chi)R + O(R^2)\right)}$$

But in the effective action point of view, we integrate out <u>only "heavy modes"</u> (compared to Hubble)

$$\omega_{k} = \sqrt{\frac{k^{2}}{a(t)^{2}} + m^{2}} \gg H(t)$$

so consider a scalar field Ψ with m << H(t)

• separate high and low frequency modes $\psi = \phi + \chi$

$$e^{-iS_{m,eff}[g,\chi]} = \int D\phi e^{-iS_m[g,\phi+\chi]} = e^{-i\int \sqrt{-g} d^4x \left(L_{eff}[\chi] + f(\chi)R + O(R^2)\right)}$$

But in the effective action point of view, we integrate out <u>only "heavy modes"</u> (compared to Hubble)

$$\omega_{k} = \sqrt{\frac{k^{2}}{a(t)^{2}} + m^{2}} \gg H(t)$$

so consider a scalar field Ψ with m << H(t)

• separate high and low frequency modes $\psi = \phi + \chi$

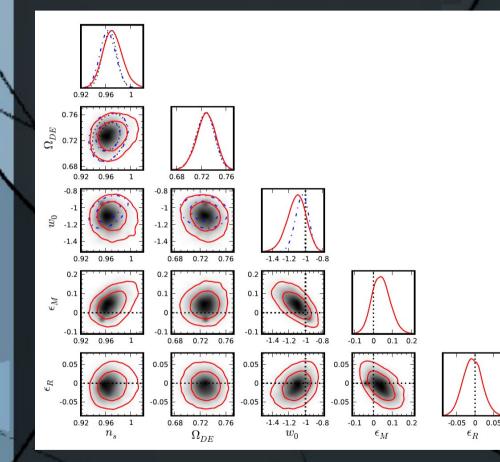
 $e^{-iS_{m,eff}[g,\chi]} = \int D\phi e^{-iS_{m}[g,\phi+\chi]} = e^{-i\int \sqrt{-g} d^{4}x \left(L_{eff}[\chi] + f(\chi)R\right)} O(R^{2})$

- the χ dependence prevents absorption in G $\rho_{Z,ren} \sim f(\chi) H^2(t) M_{pl}^2 + \dot{f}(\chi) H M_{pl}^2$
- early DE, tracking mechanism

Summary

- The computation of zero-point energy amounts to integrating out the matter d.o.f. <u>completely</u>
- In the effective theory point of view, we integrate out only « heavy » modes
- If there is <u>ultra-light matter</u>
 - its long-wavelength modes survive integration
 - effective coupling to the zero point energy of the field

$$\rho_{DE}(a) = C a^{-3(1+w_0)} + \epsilon_R \rho_R(a) + \left[\epsilon_M + \left(\epsilon_R - \epsilon_M\right) \log\left(a - a_{eq}\right)\right] \rho_M(a)$$



2-parameter extension of wCDM <u>ΛCDM compatible</u>

 $-1.35 < w_0 < -0.903$

 $-0.0465 < \epsilon_M < 0.140$ $-0.0558 < \epsilon_R < 0.0446$

Thank you very much

Backup

Renormalization of the quadratic term

$$\rho_{bare}^{(2)}(\Lambda_c) = \frac{H^2(t)\Lambda_c^2}{16\pi^2}$$

$$p_{bare}^{(2)}(\Lambda_{c}) = \left(w_{tot}(t) + \frac{2}{3}\right) \frac{H^{2}(t)\Lambda_{c}^{2}}{16\pi^{2}}$$

The covariant counter-term

$$S_{cov.count}^{(2)} = A(\Lambda_c) \int d^4 x \sqrt{-g} R$$

 $\rho_{cov.count}^{(2)} = -6 A(\Lambda_c) H^2(t) \qquad p_{cov.count}^{(2)} = -6 A(\Lambda_c) W_{tot}(t) H^2(t)$

Ok for the energy but not for all of the pressure \rightarrow must find a term with no T_{00}

Renormalization of the quadratic term

For the non-covariant part we restrict to given FRW

 $g_{\mu\nu} = \left(-N^2(t), b^2(t)\delta_{ij}\right)$

 $ilde{g}_{\mu
u} = \left(-1$, $a^2(t)\delta_{ij}
ight)$

 $S_{n-cov.count}^{(2)} = B(\Lambda_c) \int d^4 x \left[\sqrt{-\tilde{g}} \left(\tilde{R} + 2\tilde{R}_{00} \right) \right] \frac{\sum_i g_{ii}}{\sum_j \tilde{g}_{jj}} \sim \int dt \frac{\dot{a}^2(t)}{a(t)} b^2(t)$

No contribution to the energy density and $\sim H^2$

Testing the model

• The total dark energy (χ sector) is well described by

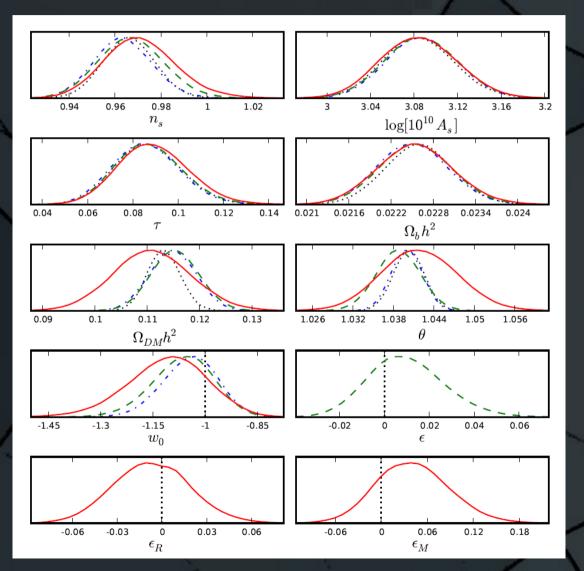
 $\rho_{DE}(a) = C a^{-3(1+w_0)} + \epsilon_R \rho_R(a) + \left[\epsilon_M + \left(\epsilon_R - \epsilon_M\right) \log(a - a_{eq})\right] \rho_M(a)$

where w_0 , ϵ_M , ϵ_R are constants

This a two-parameter extension of wCDM

Tested with modified CAMB and CosmoMC Sne Ia, BAO, CMB, BBN, HST

CAMB / CosmoMC results



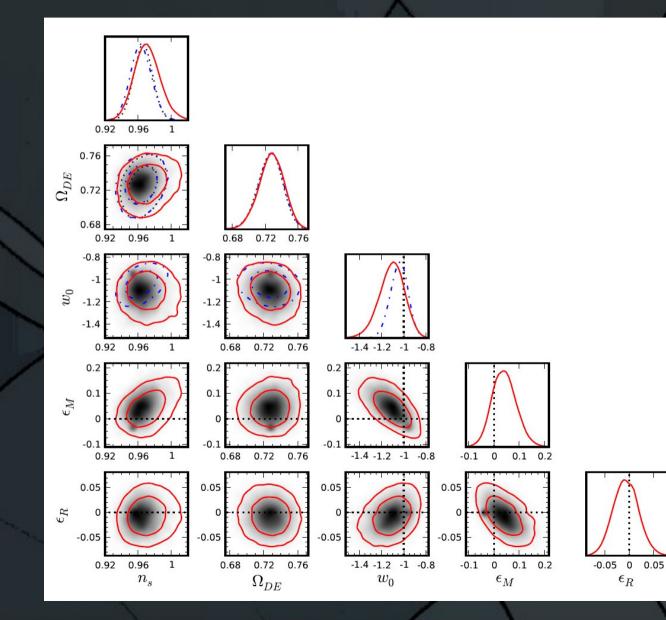
 $-1.35 < w_0 < -0.903$

 $-0.0465 < \epsilon_M < 0.140$

 $-0.0558 < \epsilon_{R} < 0.0446$

ΛCDM compatible

CAMB / CosmoMC results



CAMB / CosmoMC results

