

Short-Range Gravity experiment using digital image analysis

Test of Newtonian Inverse square law and weak equivalence principle

Rikkyo Univ./ RIKEN Kazufumi Ninomiya

© Jiro Murata Rikkyo Univ. ^A RIKEN ^B N. Ogawa ^A, R. Kishi ^A, A. Taketani ^B, Y. Nishio ^A, H. Murakami^A and J. Murata ^A

Motivation

Why short-range Gravity?

Hierarchy problem

 α : coupling constant

Gravity is extremely weak comparing to other 3 gauge interactions

Gravity propagates toward extra dimensions.

Large Extra Dimension model (N. Arkani-Hamed et., al., PLB429(1998)263)

Possibility of the deviation from gravitational inverse square law below mm scale

Motivation

Why short-range Gravity?

Hierarchy problem

Gravity is extremely weak comparing to other 3 gauge interactions

Newton

Gravity propagates toward extra dimensions.

Large Extra Dimension model (N. Arkani-Hamed et.. al.. PLB429(1998)263) Possibility of the deviation from gravitational inverse square law below mm scale

Principle

Torsion pendulum

 $\tau = -\kappa \delta \theta$ $\kappa : \text{Torsional spring constant}$ Torque \propto Angular Displacement Angular displacement of torsion pendulum

Gravitational signal from attractor source

Measurement of the angular displacement

Our typical experimental data

Digital Image analysis system

Determining of the angle of the torsion balance bar using pixel intensity

angular resolution : 1µ degree

Offline analysis

y=ax+b

((···))

Digital Image analysis system

Digital Image analysis system

Determining of the angle of the torsion balance bar using pixel intensity

angular resolution : 1µ degree

Offline analysis

y=ax+b

((···))

Our experimental result

Upper limit of the new Yukawa interaction

 λ : interaction range α : coupling constant

- NULL type experiment
- Suppression the systematic error

atomic number

Rurata Dab.

Wurata Dab.

Result

Wurata Dab.

Torque ∝ angular displacement

Composition dependence of the gravitational constant

Upper limit of the baryon number coupling force

Composition dependence of the gravitational constant

Upper limit of the baryon number coupling force

Conclusion

Test of the inverse square law

• Not contradicted with Newtonian inverse square law within our experimental precision at cm scale.

Test of the equivalence principle

Confirmed the composition independence of the gravitational constant G at mm scale, for the first time.
Succeeded to set the tightest upper limit of the baryon number coupling force below cm scale

The next Generation experiment

Most precise test of Newtonian inverse square law below mm scale