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The Simplicity of Lambda
In a FRW �at spacetime the �eld equations of the ΛCDM
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They describe the Hamiltonian system of the 1-D hyperbolic
oscillator. The Solution of the �eld equations is

a (t) = a0 sinh
3
2 ωt

That means that eq. (2) admits eight Lie point symmetries which
is the sl (3,R) algebra. Therefore the system of eqs. (1),(2)
admits �ve Noether point symmetries, as many as the free particle.
The �eld equations for the: a) empty space b) CDM c) de Sitter
and d) ΛCDM admit the same algebra of Lie/Noether symmetries.
But not the same representation!



f(R) gravity

The action for the f (R) gravity is
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Z
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p
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Z
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p
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where Lmatter is the Lagrangian of matter. The modi�ed �eld
equations are

G µ

(Mod ) ν
= (1+ f

0
)G µ

ν � gµαfR , α ; ν+
�
�f 0 � 1

2
(f � Rf 0)

�
δ

µ
ν = k

2 T µ
ν



In the content of a FRW C (with zero spatial curvature)

ds2 = �dt2 + a2 (t) δijdx idxk

with a dust �uid (pm = 0) and for comoving
observers ua = ∂t , uaua = �1 the �eld equations become
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From T µν
;ν = 0 we �nd ρm = ρm0a

�3.



In order an f (R) model to be cosmologically viable must satisfy
the following conditions (Amendola L and Tsujikawa S Dark
Energy Theory and Observations)

� f 0 (R) > 0 for R � R0 > 0 where R0 is the Ricci scalar at
the present epoch. If the �nal attractor is a de Sitter point
there needs to be f 0 (R) > 0 for R � R1 > 0 where R1 is the
Ricci scalar at the de Sitter points.

� f 00 (R) > 0 for R � R0, f (R)! R � 2Λ for R � R0 in
order to be consistent with local gravity tests and for the
presence of the matter dominated era.

� 0 < Rf 00
f 0 (r = �2) < 1 where r = �

Rf 0
f = �2 for the

stability of the late de Sitter point.



Some f (R) models are

� The Starobinsky model
f (R) = R �mRc

h
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(Starobinsky A A

2007 JETP 86 157)

� The Tsujikawa model
f (R) = R �mRc tanh (R/Rc ) (Tsujikawa S 2008 Phys. Rev. D
77 023507)

� The generalization of the
ΛCDM f (R) =

�
Rb � 2Λ

�c
, c � 1. (Amendola L et.al 2008

Phys. Lett. B 660 125)

� and the list goes on...



� The modi�ed �eld equations describe a 2-D Hamiltonian
dynamical system of second order ODE.

� It is proposed that the �eld equations should be integrable via
point symmetries.

� In order for this to be achieved, f (R) will be de�ned so that
the dynamical system admits Noether point symmetries.
This is a geometric criterium since the point symmetries are
generated from the mini superspace of the �eld equations.
(Tsamparlis & Paliathanasis arXiv:1101.5771)



The Dynamical system

The Lagrangian of the �eld equations is
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The Lagrangian is of the form

L = T � V

in the space of the variables fa,Rg. T is the Kinetic term
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and V the potential
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The Dynamical system

The Lagrangian (3) is autonomous and admits as Noether point
symmetry ∂t with Noether Integral the Hamiltonian

E = 6af
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ȧ2 + 6a2f
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�
which is the modi�ed Friedmann equation. The constant E is
related to the density of the dust �uid as follows

E = 6ΩmH20 .



Noether Symmetries

If X = ξ
�
t, xk

�
∂t + ηi

�
t, xk

�
∂i is the generator of a Lie

symmetry then X is a Noether symmetry if the following condition
holds

X [1]L+ L
dξ
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=
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The solution of the Noether Condition is (see Tsamparlis &
Paliathanasis arXiv:1101.5771) the Homothetic algebra of the
kinetic 2-D C

ds2(2) = 12af
0da2 + 12a2f 00dadR

The Ricci scalar R(2) = 0 and since all 2-D spaces are Einstein
spaces, hence ds(2) is a �at space.
This means that the Homothetic algebra is the one of a �at space
which consist of 2 gradient KVs, a non-gradient KV and a gradient
HV.



Noether Symmetries
For the modi�ed �eld equations to admit extra Noether
symmetries other than the trivial ∂t we found that there are two
categories of f (R).

� The Power Law models (Capozziello et.al Phys. Lett. B 639)
The f (R) = R

3
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7
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� The ΛbcCDM models
The f (R) = (R � 2Λ)

3
2 b = 1, c = 3/2 admits two extra

Noether symmetries and the equivalent Newtonian dynamical
system is the anisotropic forced oscillator.
The f (R) = (R � 2Λ)

7
8 b = 1, c = 7/8 admits two extra

Noether symmetries sl (2,R) and the equivalent Newtonian
dynamical system is the Ermakov-Pinney system.



Analytic Solution for b=1 , c= 3/2
In that case the Lagrangian of the modi�ed �eld equations is

L = 9a (R � 2Λ)
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Changing now the variables from (a,R) to the normal coordinates

(x , y) via the relations a = (9/2)�
1
3
p
x , R = 2Λ+ y2/x the

Lagrangian becomes
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and the extra Noether First Integrals are

I� = e�ωt ẏ �ωe�ωty

From these the following time independent �rst integral is
constructed

Φ = I+I� = ẏ2 �ω2y2



Analytic Solution for b=1 , c= 3/2

The solution is

x (t) = x1G e
ωt + x2G e

�ωt +
1
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I2eωt + I1e�ωt�2 + I1I2
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and the Hamiltonian Constrain gives E = ω (x1G I1 � x2G I2) .
By inserting the analytical solution into the modi�ed Friedmann
equation, it can be easily demonstrated that in the matter
dominated era the Hubble parameter tends to its nominal form,
namely

H (a)! a�3/2



Analytic Solution for b=1 c=7/8

In this case, the normal coordinates are (u, v) where
a =

p
uv ,R = 2Λ+ v 12

u4 . Under a coordinate transformation the
Lagrangian becomes
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This is the Ermakov-Pinney system and the general solution is

u (t) =
�
u1e2λt+u2e�2λt+2u3

� 1
2

v (t) = 2
1
6 φ

1
12 e�A(t)

�
4V 0+e�12A(t)

�� 1
6

where A (t) =

arctan
�
2λp

φ

�
u1e2λt+u3

��
+ 4λ2u1

p
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Lewis Invariant.



FRW with non zero Spatial Curvature

In the case of the non zero spatial curvature FRW spacetime the
f (R) models which admit extra Noether symmetries are

� f (R) = R2

� f (R) = R
3
2

� f (R) = (R � 2Λ)
3
2

The analytical solution for the Λ1, 32
CDM model is

a2 (t) = x (t) = x�at (t) +
K̄
ω2

where x�at (t) is the analytical solution for the �at case for
the same f (R) function.



The ΛbcCDM model was phenomenologically selected in order to
extend the concordance Λ cosmology.
It appears from the current analysis that it has a geometrical basis.
For b = 1, c = 3/2 it provides a cosmic history which is similar to
those of the usual dark energy models while at the same time there
provides an analytical solution for all spatial curvature models.
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