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Motivation

GW driven f-mode instability of relativistic stars

Time evolution of the instability

GW signal of the f-mode and its detection prospectives
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CFS instability

Rotating NS are prone to CFS 
gravitational-wave instability 

Radiation drives a mode unstable if 

1

τ
≤ 0Instability condition:
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τ
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2E

where

ωr (ωr −mΩ) ≤ 0

δρ ∼ eiωt−t/τ where

τ = τ (Ω, T )

Viscous mechanisms limit the 
gravitational-wave instability

=⇒ τgw ≤ 0

δρ ∼ e−t/τgw

and
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Equations
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We calculate the mode-frequency and eigenfunctions from time 
simulations.

With the energy volume integrals we determine the damping/growth 
times.

We study the instability evolution with a set of evolution equations 

Method
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N = 1

N = 2/3

ΩK = 11.206 kHz

ΩK = 4.229 kHz

Mode Frequency

Evolution of the relativistic perturbation equations in Cowling approximation

Standard model

Supramassive model

δ (∇νT
µν) = 0 δgµν = 0where

-1

0

1

 [ 
kH

z 
]

N = 1

N = 2/3

l = m = 4
l = m = 3

f-mode

f-mode l = m = 4

l = m = 3

0.8 0.85 0.9 0.95 1
 / K

-4

-3

-2

-1

0

1

 [ 
kH

z 
]

M = 1.4M⊙

M = 1.6M⊙

Thursday, 28 June 2012



N = 1

N = 2/3

ΩK = 11.206 kHz

ΩK = 4.229 kHz

Mode Frequency

Evolution of the relativistic perturbation equations in Cowling approximation

Standard model

Supramassive model

δ (∇νT
µν) = 0 δgµν = 0where

-1

0

1

 [ 
kH

z 
]

N = 1

N = 2/3

l = m = 4
l = m = 3

f-mode

f-mode l = m = 4

l = m = 3

0.8 0.85 0.9 0.95 1
 / K

-4

-3

-2

-1

0

1

 [ 
kH

z 
]

M = 1.4M⊙

M = 1.6M⊙

106 107 108 109 1010

T [K]

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 / 
K

N = 1

N = 2/3
l = m = 4

l = m = 3

f-mode

l = m = 4

Tcn

Thursday, 28 June 2012



dE

dt
= −2E
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E = αẼ(Ω)

J = Js + αJ̃c(Ω)

Cv
dT

dt
= −Lν +Hs

Instability Evolution

Mode growth Non-linear saturation

Basic equations

Amplitude Normalization

E = αErot α = 1 =⇒ E � 10−2M⊙c
2

Hs =
2E

τs

δρ ∼ α1/2Note:
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Results
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N = 1 polytrope Instability trajectory
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N = 2/3 polytrope Trajectory
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l=m=4 f-mode l=m=3 f-mode
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N = 1 polytrope
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F-mode versus R-mode

N = 2/3 model
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Conclusions
The GW signal of very compact objects may be detectable from 
Virgo Cluster by ET.

The magnetic torque affects the spin down when  

The r-mode may limit the f-mode instability, but we need to know 
the relative saturation amplitude more accurately. 

More ingredients in future work.

The l=m=2 f-mode may become important if we abandon the 
Cowling approximation.

Study realistic EoS and consider dUrca reactions. 

Include the Crust and the effects of Ekman layers.

Bp ≥ 1012G
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This is the End
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