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Fluids filling riemannian manifolds

We will study fluids in the context of general relativity and derive
certain local elliptic type estimates for the fluid quantities. The
main motivation for these studies are numerical codes for fluids.
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Basic equations

Metric of the form
g = −ϕ2dt2 + γ(t)

The slices
Ht = {x ∈ M/t(x) = t}

are spacelike hypersurfaces that carry the metric γ. We will
assume that the initial slice H0 is a 3-manifold equipped with
smooth initial data ϕ, γ, k , and contains a fluid with data
(v ,Ω, θ, p̃), p̃ = %+ p = ew ).
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Einstein equations read

Rµν = 2

(
Tµν −

1

2
Tgµν

)
Energy momentum tensor of a perfect fluid is

Tµν = p̃vµvν + pgµν , p̃ = %+ p

The contracted second Bianchi identities demand that the
energy-momentum tensor satisfies the continuity equation

∇νTµν = 0

In the case of the perfect fluid these comprise the continuity and
the Euler’s equation.
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The fluid velocity is chosen as g(v, v) = −1 which gives that for
v = (v0, v):

ϕ2(v0)2 = 1 + ||v ||2γ =: τ2

Notice that

T00 = (p̃τ2 − p)ϕ2 ≥ (p̃|v |2γ + %)ϕ2 (1)

T = 3p − %
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The induced riemannian metric on the slices Ht is denoted by γ(t)
and the second fundamental form is k(t) and we have the first
variation identity

∂tγ = −2ϕk (FV)

The second variation formula and the Gauss-Codazzi (GC) and
Gauss equations under the assumption of maximal slicing (locally
exists) i.e. tr(k) = 0 are written as:

∂tkij = −∇i∇jϕ+

(
Rij − 2kimk

m
j −

1

2
Rγij − 2Tij

)
ϕ (SV)

∇ikjm −∇jkim = Rm0ij (GC)

Rij − kilk
l
j = Ri0j0 + Rij (G)
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Taking the trace of (G) we obtain that:

R− |k |2 = T00 ⇒ |k |2 + p̃τ2ϕ2 = ϕ2p + R

We observe that

|k|2 + p|v |2 + ρτ = R⇒ R ≥ p|v |2, |k|2, ρτ

The trace of (GC) gives us that:

div(k) = 2Tj0 = 2p̃τvj

Furthermore the trace of (SV) we obtain that

ϕ∆γϕ+

(
|k|2 + 2(T00 +

1

2
ϕ2T)

)
ϕ2 = 0

hence the differential equation for δ = p − ρ:

ϕ∆γϕ = −
(
2πτ2 + |k |2 + δϕ2

)
ϕ2 (L)
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Wave equations for the second fundamental form

Moreover the second variation equation provides through the
equation for the Ricci curvtaure the wave equation for the second
fundamental form;

ϕ2gk = S

where

Sij = S00,ij + S01,ij + S10,ij + S11,ij + S2,ij + S3,ij
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S00,ij = −4ϕ

[
k l
i k m

l kjm −
1

2
Rl

ijmk
m
l −

3

4
(Rmik

m
j + Rjmk

m
i ) +

1

2
Rkij

]
S01,ij = −4ϕ

[
p̃(kilv

lvj + kjlv
lvi ) + p

(
γljk

l
i + γlik

j
j

)]
S10,ij = 2(∇lϕ)(∇ik

l
j +∇jk

l
i )− 3∇lϕ∇lkij + ϕ−1kij |∇ϕ|2

S11,ij = ϕ−1 (kli∇jϕ+ klj∇iϕ)∇lϕ

S2,ij = − (kjr∇i∇rϕ+ kir∇j∇rϕ+ kij∆γϕ)

S3,ij = ∂tTij +∇i (ϕ
2T 0

j ) +∇j(ϕ
2T 0

i )

(2)

Recall that the wave operator is written as

2g = −ϕ−2∂2t + ∆γ
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We assume that the fluid satisfies a barotropic equation of state:

p = f (ρ,S) ≡ f (ρ)

The sound speed in the fluid is denoted by

η2 =

(
∂p

∂ρ

)
S

= f ′(ρ), w = log p̃

and we also introduce the quantity

σ =

(
∂2f

∂ρ2

)
S

= f ′′

Fluid equations read(
vνvµ +

η2

1 + η2
gνµ
)
∇µw = −θvν − vµ∇µvν

Demetrios Pliakis/ in collaboration with T. Papakostas Local existence for Einstein-Euler equations



Acoustical metric

We introduce the acoustical metric:

g̃ =
η2

1 + η2
gνµ + vνvµ

with determinant −d
d =

η6

(1 + η2)4

We form at the wave operator for g̃ and obtain the wave equation
for w :

2g̃w = −θ2 − 2vν∇νθ − Ric(v , v)−∇νvµ∇µvν
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Expansion
θ := ∇µvµ

Velocity gradient

∇µvν = Ωµν + Sµν +
1

3
θΠµν +

η2

1 + η2
Πκ
µ∇κτ
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Vorticity tensor:

Ωµν =
1

2

(
Πκ
µ∇κuν − Πκ

ν∇κvµ
)

Shear tensor

Sµν =
1

2

[
Πκ
µ∇κuν + Πκ

ν∇κuµ
]
− 1

3
θΠµν
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Raychanduri equations

vα∇αθ = Ω2 − S2 − 1

3
θ2 + 3r

vα∇αΩµν = −2

3
θΩµν − (SµκΩκ

ν + ΩµκS
κ
ν )

vα∇αSµν = −2

3
θSµν−(SµκS

κ
ν +ΩµκΩκ

ν)−Rµν+
1

3
(S2−ω2+r)Πµν
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Recall that the curvature quantities appearing above are:

R00 = Rl0m0v
lvm, R0j = Rl0mjv

lv j

Rij =
τ2

Φ2
R0i0j +

τ

Φ
R0iljv

l + Rlimjv
lv j
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Geodesic pixels

Points C0 = {C 0
i }Ni=1 ⊂ Ht at distance d(C 0

i ,C
0
j ) ∼ 0 geodesic

balls of radii ri , B
3
C0

i ,ri
, S2

C0
i ,ri

. Overlap in quadruples

B0;i1...ik =
k⋂

j=1

B3
C0

ij
,rij

k = 2, 3, 4

spherical regions denoted as F 0;i1...ik interior curvature data

Ric0;i1...ik

Face second fundamental form

�h
0;i1...ik , �k

0;i1...iK ,

geodesic pixels.
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Generations of such pixels after the introduction of new centers
and arrive at the collection of pixels after generation j :

Bj ;i1...ik

with elementary wave fronts F j ;i1...ik and curvature data:

Ricj ;i1...ik , �h
j ;i1...ik , �k

j ;i1...iK ,

It is written in the form for η`;i1...ik , µ`;i1,...,ik :

F `;i1...ik =
k⋃

j=1

F `;i1...ij
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The faces F `;i1...ij are called elementary wave fronts (EWF). Each
pixel defines homothetic EWF spanned by the tubular
neighbouhoods of the elementary wave fronts:

Sr ,ε,`;i1,...,ik = Ir ,ε ×F `;i1...ik = ((1− ε)r , (1 + ε)r)×F `;i1...ik

Localized tension T (h;ϑ) of an EWF given for a smooth test
function ζ, suppζ ⊂ F `;i1...ik :

T (h; ζ) =

∫
Fk,`

|��∇h|2ζ2

�h mean curvature of the (EWF).
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EWF satisfies an η, ε condition when localilized tension satisfies the
estimate :

T (h;ϕ) ≤ η`
∫

Fk,`

ζ2h4
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Geodesic pixel satisfies the µ, ε condition if its Ricci curvature
satisfies

E(1)(R; ζ) ≤ µE(0)(R; ζ)

E(B; ζ) ≤ κE(0)(R; ζ)

Bach tensor B = ��curl(Ric). Geodesic pixel centered at C `i`
produced in the `-th generation

Bκ`;i` ;η`;i` ;µ`;i` ;ε`;i`

are selected so that their fronts

F `;i1...ik (η`;i1...ik ; ε`;i1...ik )

satify η`;i1...ik , ε`;i1...ik estimate while its curvature satisfies a
µ`,i` , κ`,i` , ε`,i` estimate.
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Geodesic coordinates from the neighboring pixels. B3
C j

i ,ri
is a

geodesic ball centered at the point C j
i and introduce polar

coordinates through Gauss lemma. The metric is written then as:

g = dr2 +�γ(r)

�γ(r) is a riemannian metric on the geodesic sphere S2
C j

i ,ri
= ∂B3

C j
i ,ri

with second fundamental form and mean curvature respectively

�k , �h.
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The curvature system

The first variation system of equations for the metric on the
geodesic sphere is written then explicitly as follows. Let

η = (�γ11,�γ22,�γ12),

ξ = (�k11,�k22,�k12)

Moreover we set:

�h = �γ
11
�k11 + 2�γ

12
�k12 +�γ

22
�k22

�υ = �γ11�γ22 −�γ
2
12, �κ = �k11�k22 −�k

2
12

µj = �hξj −
�κ

�υ
ηj , j = 1, 2, 3

ε = (R1N1N ,R2N2N ,R1N2N)

dη

dr
= 2ξ,

dξ

dr
= hξ −�κ

�υ
η − ε
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Also we have the propagation equations for the mean curvature of
the front:

d�υ

dr
= 2�υ�h,

and the mean curvature satisfies

d�h

dr
= −2ν + �h

2 − 2
�κ

�υ
− RNN

where we have set the norm of the second fundamental form:
ν = �k ij�k ij . The latter satisfies:

dν

dr
= 6�h(ν −�κ

�υ
)− 2ϕ

where
ϕ = R1

NN1ξ
1 + R2

NN2ξ
2 + 2R1

NN2ξ
3
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Gauss-Codazzi

The Gauss equations that relate the curvature of �γ,��R to the
ambient curvature

��R1212 +�κ = R1212, (G)

��R ij +�k ij �h −�k im�k
m
j = Rij , (G01)

��R + �h
2 −�k

2 = R− R00, (G02)
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Radial derivative by ; 0 and anggular ones by ; j ,��∇

κj = |��∇j
�k |, ηj = |��∇j

�h|

d�h

dr
= �k

2 − RNN (SV0)

d��∇j
�h

dr
=

∑
i1+i2=j

ci1i2��∇i1�k ∗��∇i2�k −
j−1∑
i=0

R00��∇i
�h −��∇jRNN
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Similarly the Codazzi equations

��∇ikjm −��∇jkim = RmNij

are written in the form of a 2-D Hodge system:

��curl(k)ijl = RlNij , ��div(k)i −��∇ih = RNi
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Approximation scheme

We will approximate the solution with the sequence

ϕn, kn, gn, p̃n, vn

with given initial data

ϕ0 = ϕ(0), g0 = g(0) k0 = k(0), p̃0 = p̃(0), v0 = v(0)

Solve the equations
2g̃n p̃n+1 = Fn

∆gnϕn+1 = −
(
2πnτ

2
n + |kn|2 + δnϕ

2
n

)
ϕn+1

vµn∇n
µvn+1 + vµn+1∇

n
µv

n − θnvn − g̃n(∇w)
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The basic tools for establishing the convergence of this scheme for
time interval is provided throught the various energy conservations
and and the following generalization of ”Morrey lemma” which
accompanied with the corresponding L∞ − Lp estimates provide
the Harnack inequality
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Harmonic approximation

We will use repeatedly the following method that we call harmonic
approximation method. The domains encountered here W have
boundaries with singularities that are of a specific type: the
singular set S (∂W ) is given by the transversal intersection of
hypersurfaces: geodesic spheres with local equations
s1, . . . , s`, ` = n, n + 1. The piece of the hypersurface
Hε = {x ∈ W (s1 · · · s` + ε)(x = 0} near S is for suitable ε a
smooth hypersurface close to S (∂W ). We will consider the
domain W̃ obtained by replacing the singular part S (W ) by Hε

with repacing the defining function through cut-offs by the
function given there. Let F̂ : W̃ → R be the solution of the
boundary value problem:

∆F̂ = 0, F̂ |∂W̃ = F

The suitable selection of the pixels will restrict the undesirable
pieces do not contain nodal information: their size is so small that
we could neglect them so that in first order we neglect it.
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Harmonic polynomials We will also approximate the harmonic
function defined in the pixel F̂ by a sequence {Fn}n∈N of functions
such that

∆0F̂0 = 0∆0F̂n = −
∑
i ,j

Rij ∂
2Fn−1
∂xi∂xj

− g ij∂iψ∂jFn−1 (3)

where
gij = δij + Rij

and for j = 0, 1, 2:

||∇jR|| ≤ Cµ%2−j , % = W , ψ =
1

2
log(g), g = det((gij))
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Integration by parts after multiplication by ζ2Fn and incorporation
of the preceding estimates along with Young’s inequality leads to:∫

W
ζ2|∇Fn|2 ≤ Cµ%2

∫
W
ζ2|∇Fn−1|2 + C2

∫
W

(
|∇ζ|2 + ζ2

)
F 2
n

and
supp(|∇ζ|) ⊂ (W ) = {x ∈ W /d(x , ∂W ) < ε}

and

|∇jζ| ≤
Cj

εj

We select Cµρ2 = 1 then∫
W
ζ2|∇Fn|2 ≤ C

∫
W
|∇(ζF0)|2
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Similarly we have the inequalities:∫
W
ζ2|∇2Fn|2 ≤ Cρ2

(
ρ2
∫

W
ζ2|∇2Fn−1|2 +

∫
W

(
|ζ|+ |∇ζ|2

)
|∇Fn−1|2

)
and∫

W
ζ2|∇3Fn|2 ≤ C 2ρ2

(
ρ2
∫

W
ζ2|∇3Fn1 |2 +

∫
W
ζ2|∇2Fn−1|2+

+ρ2
∫

W

(
|ζ|+ |∇ζ|2

)
|∇2Fn−1|2

Therefore we have that after iteration:∫
W
ζ2|∇2Fn|2 ≤ C

∫
W
ζ2|∇2F0|2

and as well as ∫
W
ζ2|∇3Fn|2 ≤ C

∫
W
ζ2|∇3F0|2
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The Nash-Moser iteration that we describe in the sequel allows us
to bound the sequence in C 2

0 (W ). Rellich lemma allows us to
extract a sequence that converges in H1(W ) and we can bound in..
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L∞ − Lp estimate

g , χ smooth functions, ĥ polynomial weight function of degree m:

Wj = {x ∈ W / θ(1− θj)η
2
≤ |ĥ(x)| ≤ (1− θ + θj)η}

and suppχj ⊂ Wj

χj(x) = `

(
ĥ(x)

(1− θ + θj)η

)
`

(
θ(1− θj)η

ĥ(x)

)
Smooth g satisfies the inequality, for positive constants
γ > 1, e = 2, 4 and any smooth cut-off χ:∫

W
χ2|∇g |2 ≤ γ

∫
W
χ2|g |e

and

D(η, γ) = (ηsγq)3 , s = `p +
a + 1

3a
, q =

p(t + 1)

2t
+

t

3
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Morrey type inequality

ε < 1, 0 < γ < 1 or γ < 0, p < 2:

uε =
√
u2 + ε2, ψε = log uε, w = uγε

and ζ, supp(ζ) ⊂ W :∫
W
ζ2|∇uε|2 ≤ C0

∫
W
ζ2u2ε (4)

For q = 2
γ : ∫

W
|∇w |pζp ≤ C1

∫
W
|∇ζ|2wq (5a)∫

W
|∇ψε|2ζ2 ≤ C2

∫
W
|∇ζ|2 + ζ2 (5b)

(??) follows after selection for ζ as uγ−1ε

|∇w | = γw1+ 1
γ |∇uε|

and ∫
W
ζ2|∇w |2 ≤ C0

γ2

∫
W
ζ2w2
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The inequality (??) requires the additional assumption for τ > 0:∫
W
ζ2|∇2u|2 ≤ τ

∫
W
ζ2u2

We start selecting values u1, . . . , um > 0 and assume that

u = uj + hj
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Assumptions:

We set

(uj + hj)
2 ≥ (1− ε)

(
u2j −

hj
ε2

)
≥ θ2h2j

We select
θ2ε2 + 1

1− ε2
= cε2

We choose
c = 4 + µ

Finally ε = 1
2 + µ
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Harmonic approximation hj in suitable bricks selected so that we

use the initial form of ĥj . Hence we have that for
ψ = log(u), ψ̃ = log(h)∫

B
|∇ψ|2ζ2 ≤ c

∫
B
|∇ψ̃|2ζ2

ĥ harmonic approximation of h in W and set:

h = ĥ + κ

The standard harmonic approximation method estimates combined
with partial integration leads us to∫

W
ζ2|∇2κ| ≤ D(η, τ)

∫
W
ζ2u2

We could get

sup
W0

|∇κ| ≤ D(η, τ)ε

(∫
W
ζ2u2

)1/2

We compute for ε < 1:

u2ε = û2 + 2κû + κ2 + ε2 ≥ cεû
2
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uε =
√
u2 + ε2, ψε = log uε, w = uγε

and for ζ, supp(ζ) ⊂ W :∫
W
ζ2|∇uε|2 ≤ C0

∫
W
ζ2u2ε (6)

Then for q = 2
γ :

∫
W
|∇w |pζp ≤ C1

∫
W
|∇ζ|2wq (7a)∫

W
|∇ψε|2ζ2 ≤ C2

∫
W
|∇ζ|2 + ζ2 (7b)
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Hardy inequalities

Let P homogeneous polynomial of degree m and
ζ ∈ C∞0 (R3 \ {P = 0}) then∫

W

∣∣∣∣∇PP
∣∣∣∣2 ζ2 ≤ C1H

∫
W
|∇ζ|2

∫
W

P−
2
m ζ2 ≤ C2H

∫
W
|∇ζ|2
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