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Abstract
 Homogeneous and isotropic   inflationary string cosmological model is investigated in Brans-
Dicke scalar tensor theory of gravitation. A special model is also obtained. For determinate 
solution, we have assumed that the trace of energy momentum tensor of string cloud vanishes 
and expansion  θ is  proportional  to Eigen value    of  shear tensor       .The physical  and 
kinematical parameters of the models are also discussed.

                                                                     1.   Introduction

In recent years, the researchers have shown their keen interest in the alternative theories of 
gravitation.  One  of  the  most  popular  theories  among  them  is  a  scalar  tensor  theory  of 
gravitation, proposed by Brans and Dicke [1]. This theory involves a scalar field φ in addition 
to the familiar general relativistic tensor. They postulated that  φ behaves as the reciprocal of 
gravitational constant G, where φ is accepted to satisfy a scalar wave equation whose source is 
all the matter in the universe. Einstein pointed out that Mach's principle is not sustained by 
general  relativity.  Now  the  study  of  cosmological  models  of  Brans-Dicke  theory,  which 
develops  Mach's  principle  in  a  relativistic  framework  by  assuming  interaction  of  inertial 
masses  of  fundamental  particles  with  some cosmic  scalar  field  φ coupled with  large-scale 
distribution of matter in motion, has gained momentum. The latest inflationary models[2] has 
been  studied   by  Mathiazhagan  and  Johri,  extended  inflation  by  La  and  Steinhardt [3], 
Steinhardt and Accetta[4], hyper extended inflation and extended chaotic inflation by Linde[5] 
are based on Brans-Dicke theory and general scalar tensor theories.

Several authors have studied Brans-Dicke cosmological models in four dimensions. Singh 
and Rai [6] investigated Brans-Dicke cosmological models with perfect  fluid as a source in 
detail.  The string theory has a great  importance to  describe an event at  the early stage of 
evolution of the universe in a lucid way. According to Kibble[7] and Zel'dovich[8], the cosmic 
strings  arise  during  the  phase  transitions  as  the  universe  passes  through  its  critical 
temperature after the big-bang explosion and give rise to perturbation leading to the formation 
of galaxies .The cosmic strings have stress energy and couple to the gravitational field and 
gravitational field is related to scalar field  φ. Therefore, it is interesting to study scalar field 
effect, which arises from string by using Brans-Dicke field equations.
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The general treatment of strings was initiated by Letelier[9,10] and Stachel[11]. In recent 
years various authors viz. Vilenkin[12], Krori et al.[13,14], Chakraborty and Chakraborty[15], 
Tikekar and Patel[16,17], Bali and
 Upadhyaya[18], Bali and Singh[19], Bali and Anjali[20], Pradhan et al.[21],Rathore et al. [22] 
have investigated string cosmological  models in general relativity whereas Sen[23], Mahanta 
and   Mukherjee[24],  Bhattacharjee  and  Baruah[25],  Bali  et  al.[26]  have  studied  string 
cosmological models in alternative theories of gravitation in four dimensions. Rahaman et al.
[27],  Mohanty  and  Mahanta  [28],  Rathore  and  Mandawat  [29,30]  investigated  string 
cosmological models in alternative theories of gravitation in higher dimensions.

The  present  investigation  is  concerned  with  Homogeneous  string  cosmological  model 
having inflationary character in Brans-Dicke scalar tensor theory of gravitation, when the trace 
of  energy momentum tensor of  string cloud  vanishes i.e.  ρ+λ=0,  Here  ρ is  the rest  energy 
density and  λ  is  the tension density.  To get  a  determinate solution, we have assumed a 
physically plausible condition that the expansion (θ) is proportional to Eigen value   (    ) of 
shear tensor (     ), which is physically plausible condition, where 
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which again leads to

 A BC n= 1( )

where  is proportional constant and 1 is constant of integration and n =
+ 3

2 - 3



 . Some physical 

and kinematical properties of the model are also discussed.

2.   The Metric and Field Equations

We consider the spatially homogeneous and anisotropic Bianchi type-I metric in the form.

ds2 = –dt2 + A2dx2 + B2dy2 + C2dz2                  (1)

where A, B, C are functions of cosmic time 't' alone.

The Brans-Dicke scalar tensor field equations are given by                           

          Gij=–8πφ-1Tij–ωφ-2 (φ,iφ,j–½gij φ,k φ,k) – φ-1 (φi;j - gij φ)                                                        (2) 

And   ( ) 11'
; 238 −− +== ωπφφφ Tk
k   

(3)                                                                                                           
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where Gij = Rij - ½gijR is the Einstein tensor, Tij is the stress Energy of matter, φ is the scalar field 
and ω is the dimensionless coupling constant and comma and semicolon denote partial and 
covariant differentiation respectively.

The equation of motion

T j
ij
; = 0                                                                           (4)

are consequence of the field equation. 

The energy momentum tensor for string dust source is given by

T u u x xj
i i

j
i

j= −ρ λ
                   (5)

where ui is the four velocity of the string cloud, xi is the normal space like four vector which 
represents the string direction i.e. direction of anisotropy and ρ is the rest energy density of the 
cloud of strings with particles attached to them and λ is tension density of the cloud of strings. 
The string source is along the x-axis, which is the axis of symmetry. Ortho normalization of  u i 

and xi is given as

uiui = xixi = –1 and uixi = 0  (6)

In the co-moving coordinate system, we have from (5)

T T

Tj
i
1
1

2
2

3
3

4
40

0

= − = = = −ρ

= ≠

λ

ρ λ

, ,

,

     T     T

    for i  j and T = -( + )                                                                                                       (7) 

We also consider

ρ = ρp + λ

where ρp is the rest energy density of the particles. The energy densities for coupled system ρ 
and ρp are restricted to be positive and the tension density λ may be positive or negative. Here 
the quantities ρ, λ and the scalar field are functions of cosmic time only.

The Brans-Dicke field equations (2), (3) and (4) for the metric (1) lead to 
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where the sub indices '4' denotes differentiation with respect to t.

3.  Solution of Field Equations

From equation (9) and (10), we have
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Using condition

A = 1(BC)n  (15)

in (14), we have
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On integration, which leads to
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Let BC = µ and C/B = ν

Therefore we have B, ,2 2 C= =µ
ν

µν

Now, from equation (16), we have

ν
ν

φ
µ

4 1
1= +

K
n

 (17)

where K1 is the constant of integration.

From equation (12), with the help of (15)

φ
µ4

2
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K
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 (18)

where K2 is the constant of integration.

From the equations (8) and (11), together with the condition  ρ + λ = 0 and equation (18) we 
have
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where K3 is the constant of integration.

Equation (18) and (19) leads to 
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µµ µ µ44 4
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where K = K2 K3

Which leads to
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where fµ µ
µ4  and f'=

df
d

= ( )

From equation (21), we have
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From equation (17), we get
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where K5 is the constant of integration.

The metric (1) reduces to
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4.  Some Physical and Geometrical Properties  

The energy density (ρ), String tension density (λ) and the scalar field (φ) for the model (26) are 
given by
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The scalar of expansion (θ), the non-vanishing components of shear (    ), shear (σ) and spatial 
volume (V) and deceleration parameter (q) for model (26) are given by 
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The model (26) starts with big-bang at T = 0. For (n + 1) > 0 the expansion in the model 
decreases  as  the  time  increases  where  as   for  (n+1)  <  0  the  expansion  increases  as  time 
increases. The model has a point type singularity (MacCallum[31]) at T = 0 for n > 0 with the 

condition  ( )1,1
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The rest energy density ρ→ ∞ as T→ 0 but  ρ→0 as T→∞ when  K6 > 0 and n > – ½. The 
string tension density λ → 0 as T →∞ but  λ → –∞ as T → 0 for K6 >0 and n > – ½. Therefore 
rest energy density and string tension density of the model has initial singularity at T = 0. The 
rest energy density for the model (26) satisfies the reality condition ρ > 0 given by Ellis if K6 > 
0. The Brans-Dicke scalar field  φ increases indefinitely as time T  → ∞ and it blows up at its 
initial stage. The spatial volume V of the model given by (35) shows that the model follows 
power law inflation. The model isotropizes at all epoch for n = ½ and K1 = 0, but remain 
anisotropic throughout the evolution when n ≠ ½ or K1 ≠ 0 or both.

The cosmological model has singularities of different kinds in different conditions at initial 
epoch, where as rest Energy density, tension density and Brans-Dicke scalar field are not free 
from initial singularities.  The sign of deceleration parameter q is different in different time 
zones. Therefore, it  is concluded that the universe will witness an epoch when it transits from 
the phase of acceleration to deceleration of vice-versa. Hence, the present cosmological model 
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represents an inflationary, shearing, non-rotating and anisotropic string cosmological model in 
Brans-Dicke scalar-tensor theory of gravitation and behaves in accordance with the present 
observational data. Therefore, this cosmological model is a realistic model.

                                                          5. Special Model

 Here we are considering the case for which n = -1. This case leads to  = 0, which restricts us 
to consider the assumption that expansion is proportional to the shear component σ1

1 . Therefore 
we have solved the field equation by taking n = -1 in a different manners.

Putting n = -1 in the equation (23), we have 
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and  with the help of (24), we have
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and using suitable transformation of coordinates, the metric (1) reduces to 
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This special  model  has no initial  singularity and for small  values of T,  it  reduces to a 

spherically symmetric cosmological model. It is neither expanding nor contracting model but 
the shear increases as T increases  and it  remains always anisotropic.  Therefore,  it  is  not a 
realistic model.
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