Gravothermal Catastrophe with a Cosmological Constant

Zacharias Roupas

Institute of Nuclear and Particle Physics - N.C.S.R. Demokritos Physics department - National Technical University of Athens

NEB 15 - Chania, 22 June 2012

Minos Axenides, George Georgiou and Z.R., arxiv:1206.2839

Thermodynamics of self-gravitating systems

- Non-extensivity of energy and entropy due to the long range character of gravitational interaction
- Non-equivalence of ensembles
 Canonical and microcanonical ensembles lead to different predictions
 Microcanonical ensemble is the proper one for gravitation
- Negative Heat Capacity (NHC) appears in the microcanonical ensemble Virial theorem: $2K + U = 0 \Rightarrow E = -K \Rightarrow C_V = -\frac{3}{2}Nk$ most astrophysical systems have NHC NHC region is replaced by phase transition in canonical ensemble
- energy decrease
 shrinking
 temperature increase
 energy increase
 expansion
 temperature decrease
 crucial for stellar stability¹: Gravothermal vs Thermonuclear effects
- important for Quantum Gravity

¹H.A.Posch,W.Thirring, PRL 95, 251101 (2005)

Mean field approximation

- intermediate scale: granularity (6*N*-dim.) \rightarrow continuum limit (6-dim.) One-particle distribution function $f(\vec{r}, \vec{p}, t)$: $dm = f(\vec{r}, \vec{p}, t)d^3\vec{r}d^3\vec{p}$ Mean field entropy: $S = \int f \ln f d^3\vec{r}d^3\vec{v}$
- Equilibrium f ⇔ extremum of entropy with constant E and M
 Stability ⇔ entropy maximum
 The approximation is valid only for stable configurations

The Physical System

Self-gravitating gas of point-particles inside a spherical shell with perfectly reflecting and insulating walls

No global entropy maximum [Antonov (1962)]

Only local entropy maxima called isothermal spheres

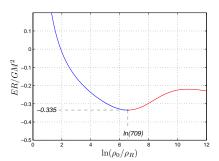
In regions of instability consider a short-distance cut-off \rightarrow global entropy maxima: core-halo structure known as core collapse [Padmanabhan (1990)]

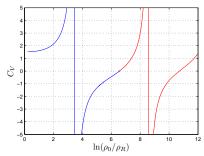
Gravothermal Catastrophe [Antonov 1962, Lynden—Bell & Wood 1968]

$$f = (\beta/2\pi)^{3/2} \rho_0 e^{-\beta(\phi-\phi(0))} e^{-\beta v^2/2}$$
 with:

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\phi\right) = 4\pi G \rho_0 e^{-\beta(\phi-\phi(0))}$$
 Emden equation

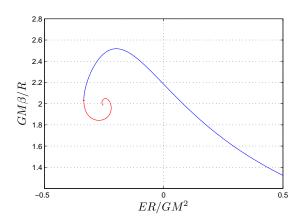
No global entropy maximum. Local entropy maxima (meta-stable states) exist only for $ER > -0.335 GM^2$ and only when $\frac{\rho_0}{\rho_0} < 709$





Poincaré's theorem: stability changes at an energy extremum

The series of equilibria $\beta=\beta(E)$. The stability changes at points of infinite slope. For the specific figure, following the curve from right $(\beta\to 0)$ to left, each time we cross a transition point the equilibria become more unstable. The blue series are stable, while the red ones are unstable.



Adding a Cosmological Constant

The Emden equation becomes

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\phi\right) = 4\pi G \rho_0 e^{-\beta(\phi-\phi(0))} - 8\pi G \rho_{\Lambda} \quad \text{Emden} - \Lambda \text{ equation}$$

where $\rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G}$.

Dimensionless variables: $x = r\sqrt{4\pi G\rho_0\beta}$, $y = \beta(\phi - \phi(0))$, $\lambda = \frac{2\rho_\Lambda}{\rho_0}$

$$\frac{1}{x^2} \frac{d}{dx} \left(x^2 \frac{d}{dx} y \right) = e^{-y} - \lambda \quad , y(0) = y'(0) = 0$$

Dimensionless temperature, energy and mass:

$$\bar{\beta} = \frac{GM\beta}{R} \quad , \quad Q = \frac{ER}{GM^2} \quad , \quad m = \frac{M}{2M_{\Lambda}}$$

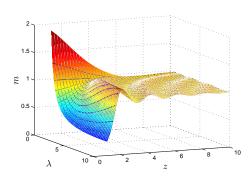
For z = x(R) we get $m = 3\bar{\beta}/\lambda z^2$. We want $\bar{\beta}(z)$ and Q(z). Have to solve Emden- Λ for various z keeping M, i.e. m fixed.

We constructed a computer code that solves Emden- Λ for various z keeping m constant. Then $\bar{\beta}$, Q are found by the equations:

$$\bar{\beta}(z) = zy'(z) + \frac{1}{3}\lambda z^2 \; , \; Q(z) = \frac{z^2 e^{-y(z)}}{\bar{\beta}^2} - \frac{3}{2\bar{\beta}} - \frac{\lambda}{2\bar{\beta}^2 z} \int_0^z x^4 e^{-y(x)} dx$$

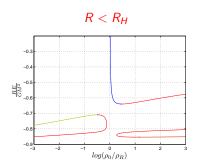
For m = const. there are various series of solutions corresponding to pairs λ , z. For m = 1 ($M = 2M_{\Lambda}$) there are infinite series.

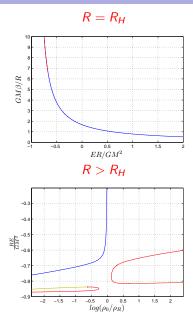
$$m = \frac{3}{8\pi} \frac{M}{\rho_{\Lambda} R^3}$$

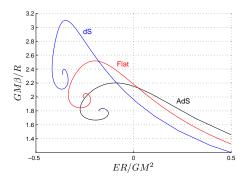


At $R_H = (\frac{3M}{8\pi\rho_A})^{\frac{1}{3}}$ there exists a homogeneous solution $\rho = 2\rho_A = const.$, that is the non-relativistic analogue of Einstein's static Universe.

The homogeneous solution suffers a transition to instability at $T_{cr} = GM/6.73R_H$. For $T \to \infty$ a collisionless gas, which is stable, while for $T \to 0$ the static unstable solution.







As the cosmological constant increases, there exist equilibrium states at even lower temperatures and energies.

Second Variation of Entropy

$$\delta^2 S = \int_0^R \int_0^R \delta M(r_2) \hat{K}(r_1, r_2) \delta M(r_1) dr_1 dr_2$$

where δM is a local mass perturbation and:

$$\hat{K}(r_1, r_2) = -\frac{\phi'(r_1)\phi'(r_2)}{3MT^2} + \frac{1}{2}\delta(r_1 - r_2) \left[\frac{G}{Tr_1^2} + \frac{d}{dr_1} \left(\frac{1}{4\pi\rho r_1^2} \frac{d}{dr_1} \right) \right]$$

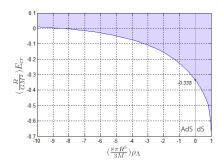
The sign of $\delta^2 S$ is determined by the sign of the eigenvalues ξ of the eigenvalue problem:

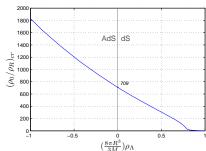
$$\int_{0}^{R} \hat{K}(r, r_{1}) F_{\xi}(r_{1}) dr_{1} = \xi F_{\xi}(r)$$
 (1)

with $F_{\xi}(0) = F_{\xi}(R) = 0$. We developed an algorithm that can numerically determine eigenvalues and eigenstates (the perturbations) of equation (1).

For increasing cosmological constant, the critical energy decreases. In AdS, beyond some ρ_{Λ} , the critical energy is positive.

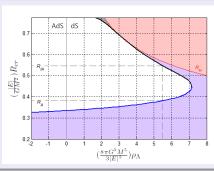
For increasing cosmological constant, the critical density contrast $(\rho_0/\rho_R)_{cr}$ decreases.

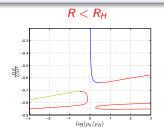


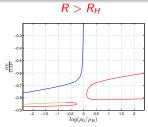


Re-entrant behaviour in dS

- No equilibrium for $R_A < R < R_{IA}$.
- For R > R_{IA} metastable states are restored.
- R_A and R_{IA} merge at an extremal value $\bar{\rho}_{\Lambda}$







Results

AdS ($\Lambda < 0$) tends to destabilize the system

- as AdS becomes stronger the region of instability is enlarging
- the instability sets in at more condensed states
- ullet beyond some Λ the instability occurs for positive energies

dS $(\Lambda > 0)$ tends to stabilize the system

- as dS becomes stronger the region of no instability is diminishing
- the instability sets in at less condensed states
- Re-entrant phenomenon: a new critical radius R_{IA} appears, beyond which a series of meta-stable states is restored
- there exists a homogeneous solution for which an instability sets in at $T_{cr}=\frac{GM}{6.73R}$
- new type of configurations are found for which $\rho(r)$ is not monotonically decreasing, but any configuration is possible

Future Plans

- Perform a full General Relativistic Analysis
- Analysis on the instability region with a short-distance cut-off
- Canonical Ensemble
- Extra Dimensions
- AdS/CFT