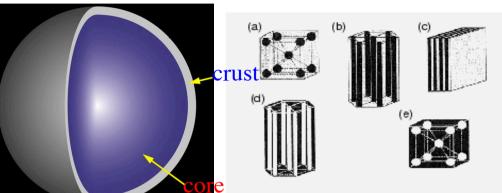
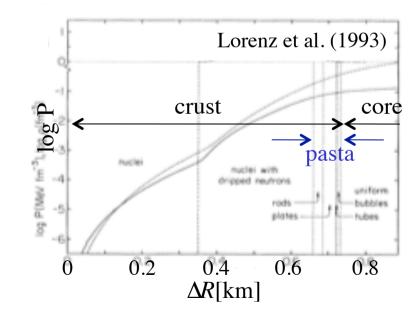
Constraints on the nuclear symmetry energy via asteroseismology

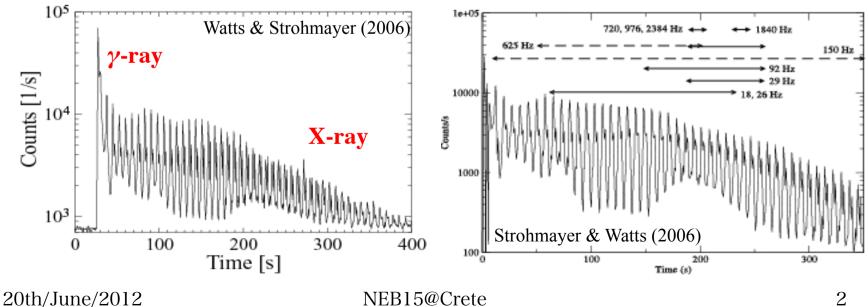

PRL 108, 201101 (2012)

Hajime SOTANI (NAOJ)

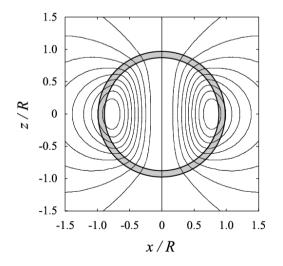

K.Nakazato (Tokyo University of Science) K.Iida (Kochi University) K.Oyamatsu (Aichi Shukutoku University)

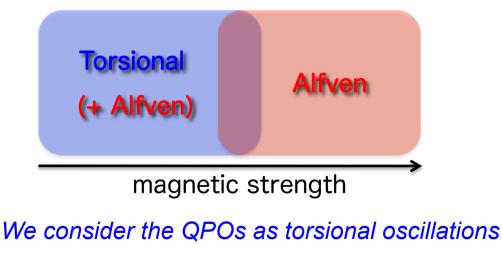
Neutron stars & asteroseismology

- Structure of NS
 - solid layer (crust)
 - nonuniform structure (pasta)
 - fluid core (uniform matter)
- Thickness of pasta ~ 100m
- Determination of EOS for high density region is quite difficult on Earth
- Constraint on EOS via observations of NS
 - stellar mass and radius
 - stellar oscillations and emitted GWs
 - "(GW) asteroseismology"
 - cf.) seismology, helioseismology


Oyamatsu (1993)

20th/June/2012

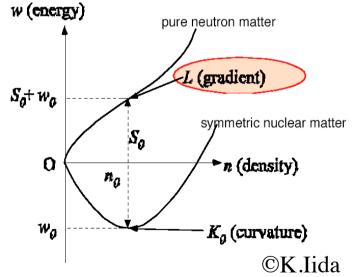

QPOs in giant flares 1


- Magnetars : $B > 10^{14}$ G
- Candidates of magentars
 - Anomalous X-ray pulsars (AXPs)
 - Soft gamma repeaters (SGRs)
 - ~ sporadic emission with X and γ -rays (~ 10⁴¹ erg/s)
- <u>Giant flares</u> from SGRs (10⁴⁴-10⁴⁶ ergs/s)
 - SGR 0526–66 in March.5.1979
 - SGR 1900+14 in August.27.1998
 - SGR 1806–20 in December.27.2004

QPOs in giant flares 2

- Afterglow of giant flares → quasi periodic oscillations(QPOs)
 - → Barat et.al. (1983); Israel et.al. (2005); Watts & Strohmayer (2005, 2006)
 - SGR 0526-66 : 23ms (43Hz), B ~ 4×10^{14} G
 - SGR 1900+14 : $B > 4 \times 10^{14}G$, 28, 54, 84, 155 Hz
 - SGR 1806-20 : B ~ 8 ×10¹⁴G, L ~ 10⁴⁶ ergs/s 18, 26, 30, 92.5, 150, 626.5, 1837 Hz
- Theoretical attempts to explain…
 - torsional oscillations in neutron star crust
 - magnetic oscillations (Alfven oscillations)

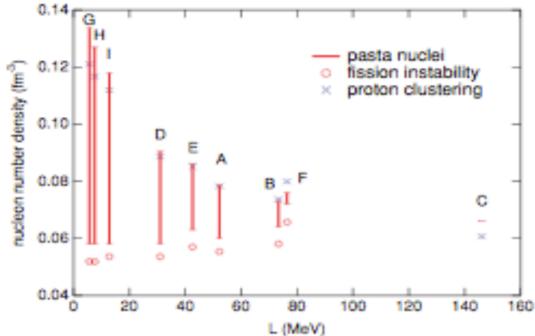
20th/June/2012


EOS for crust region

Oyamatsu & Iida (2003), (2007)

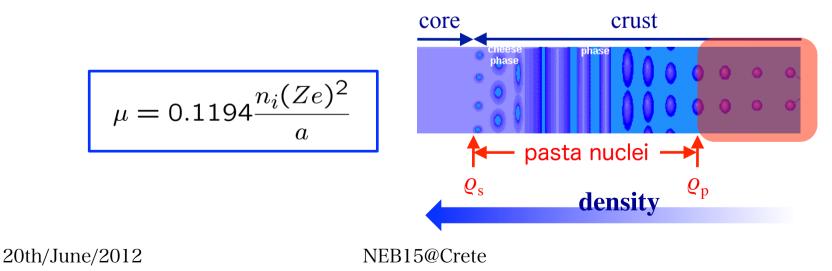
• Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

$$w = w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n - n_0)\right]\alpha^2$$

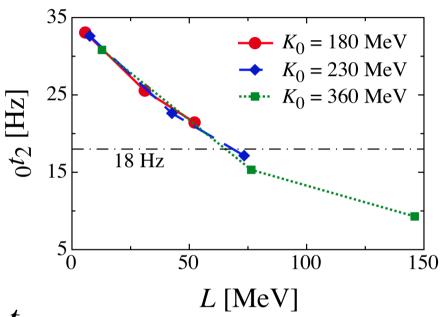

- Calculations of the optimal density distribution of stable nuclei within Thomas Fermi theory.
 w(energy)
 - We know Z, mass, & charge radius that can be calculated from the optimal density distribution to the empirical data for stable nuclei.
 - Obtain the value of w_0 , n_0 , and S_0 for given $L \& K_0$ by fitting such Z, mass, charge radius

Pasta structure

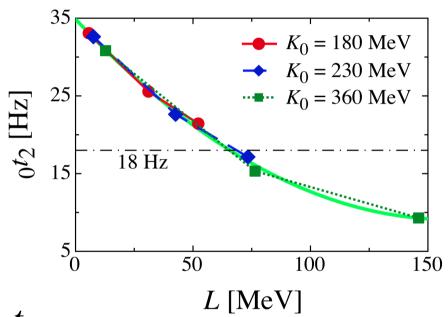
Oyamatsu & Iida (2003), (2007)


- Adopt the values of (L, K_0) , with which can be reproduced the mass and radius data for stable nuclei.
 - $-0 < L < 160 MeV, 180 MeV \le K_0 \le 360 MeV$

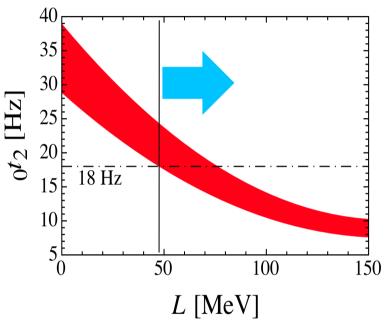
- Whether pasta phase exists or not depends strongly on *L*.
- For $L \ge 100$ MeV, pasta structure almost disappears.


What we do

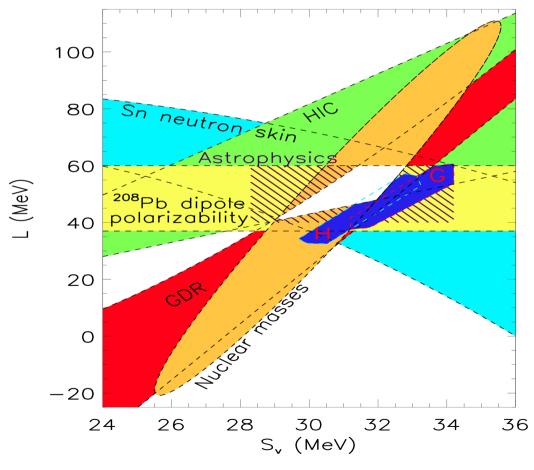
- EOS for core region is still uncertain.
- To prepare the crust region, we integrate from stellar surface.
 - *M*, *R* : parameters for stellar properties
 - *L*, K_0 : parameters for curst EOS
- In crust region, torsional oscillations are calculated.
 - considering the shear only in spherical nuclei.
 - frequency of fundamental oscillation $\propto v_{\rm s}~(v_{\rm s}^2 \sim \mu/\rho)$
 - calculated frequencies could be lower limit


Fundamental oscillation $_0t_2$

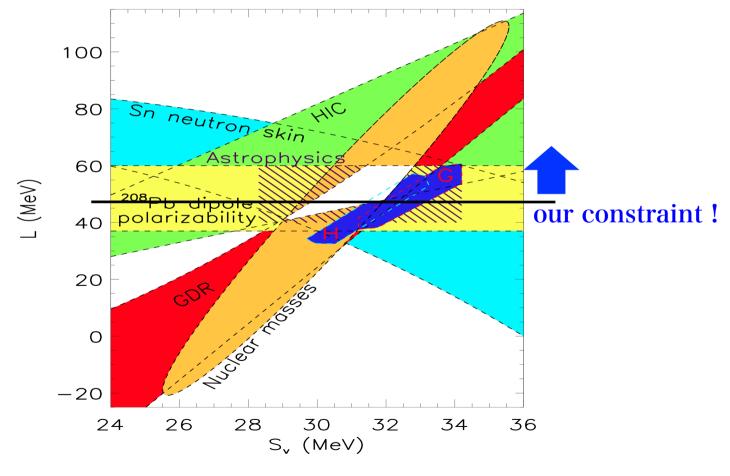
- For $M=1.4M_{\odot}$ & R=12km, calculated frequencies $_{0}t_{2}$
- $_0 t_2$ is almost independent of the value of K_0
- For R=10~14 km and $M/M_{\odot}=1.4~1.8$, similar dependence of K_0
- One can write fitting line
- Focus on *L* dependence of $_0t_2$
 - Z decreases with respect to L
 - μ also decreases with respect to *L*
 - As a result, $_0t_2$ also decreases with respect to L


Fundamental oscillation $_0t_2$

- For $M=1.4M_{\odot}$ & R=12km, calculated frequencies $_{0}t_{2}$
- $_0 t_2$ is almost independent of the value of K_0
- For R=10~14 km and $M/M_{\odot}=1.4~1.8$, similar dependence of K_0
- One can write fitting line
- Focus on *L* dependence of $_0t_2$
 - Z decreases with respect to L
 - μ also decreases with respect to *L*
 - As a result, $_0t_2$ also decreases with respect to L


Constraint on L

- For R=10km~14km & M/M_o=1.4~1.8, ₀ t_2 are calculated
- Assuming that the observed QPOs
 would come from torsional oscillations
- $_0t_2$ is the smallest frequency among a lot of torsional oscillations
 - $_0t_2$ should be equal to or smaller than the smallest observed QPOs frequency
- Consequently, $L \ge 47.6$ MeV.
 - For $L \gtrsim 47.6$ MeV, pasta region could be very narrow
 - Modification due to the pasta effect should be small


Compared with other constraints

• Lattimer & Lim (2012)

Compared with other constraints

• Lattimer & Lim (2012)

Conclusion

- QPOs are found in afterglow of giant flears
- We examined the frequencies of torsional oscillations as varying the stellar and EOS parameters.
- Fundamental frequencies are almost independent of the incompressibility K_0
- Assuming the QPOs are associated with crustal oscillations, we can make a constraint on EOS as
 - $-L \gtrsim 47.6 \mathrm{MeV}$
 - consistent with the previous examinations