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Abstract

The linearized form of the metric of a Finsler - Randers space
is studied in relation to the equations of motion, the deviation of
geodesics and the generalized Raychaudhuri equation are given for a
weak gravitational field. This equation is also derived in the frame-
work of a tangent bundle.

By using Cartan or Berwald-like connections we get some types
“gravito - electromagnetic” curvature. In addition we investigate the
conditions under which a definite Lagrangian in a Randers space leads
to Einstein field equations under the presence of electromagnetic field.

Finally, some applications of the weak field in a generalized Finsler
spacetime for gravitational waves are given.
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1 Introduction

In the framework of general relativity, weak fields and gravitational
waves have been studied by many authors decades ago e.g.[1],[2],[3]. One of
the fundamental problems in general relativity is the study of gravitational
waves. The existence of gravitational waves in linear versions of the theory
was already known in the early days of general relativity. First Einstein
considered in a Minkowski spacetime with a metric nµν a small perturba-
tion εµν such that the induced field αµν = nµν + εµν with |εµν | � 1 obeys
by perturbation in linearized equations of motion. The linearized theory of
gravity is an important theory because it can be utilized as a foundation for
“deriving” General Relativity. By using the linearized field theory of gravita-
tion some observable phenomena of our solar system and the universe can be
detected [4],[5] The weak field limit at a Finsler space-time has been studied
in [6],[7] and in the tangent bundle of a Finsler space by [8],[9], [10].

In our study we consider a pseudo- Finsler - Randers space-time of metric
function [11]

F(x, y) =
√
αij(x)yiyj + kAi(x)yi (1)

in the weak field limit where αij represents pseudo-Riemannian metric, yi =
dxi

dλ
(in applications yi represent velocity), λ a parameter along the curve and

k a constant, Ai represents the electromagnetic potential which is connected
with the electromagnetic field by Fij =

∂Aj

∂xi
− ∂Ai

∂xj
.

A Finsler-Randers space (FR) constitutes an important category of Finsler
spaces from mathematical and physical perspective e.g.[12],[13],[14],[15]. In
a FR space the condition of symmetry for the fundamental function F(x, y)
is not satisfied F(x, y) 6= F(x,−y). Causal considerations in pseudo-Finsler
space-time that include only symmetries of fundamental functions [16] are
very restricted and exclude by studying pseudo-FR spaces.[12],[15],[17].

FR space can play a significant role in the theory of weak field and gravita-
tional waves since ”a gravito - electromagnetic field” is intrinsically included
in its metric. Einstein’s General Relativity shows indeed that gravito - mag-
netic field may be associated with mass currents [18],[19]. As well a gravito
- magnetic force was postulated as an explanation for the anomalous pre-
cession of Mercury’s perihelion [20]. In addition, previous works [21], [22],
[23] ,[24], [25] showed how the electric and magnetic parts of the curvature
tensors were related to the electric and magnetic parts of the gravitational
field as well as with gravitatational waves.[26]
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This paper is organized as follows: we deal with the linearized metric
form of a pseudo FR spacetime in relation to the deviation of geodesics and
Raychaudhuri equation. In this approach we extend a previous consideration
which was given in [6]. By using Cartan and Berwald -like connections we get
“gravito - electromagnetic curvatures” for this space. We derive the equations
of motion and the Raychaudhuri equation in the framework of a tangent
bundle of a n-dimensional manifoldM . We also give the linearized connection
coefficients as well as establishing the Lorentz equation of the weak field.
In addition we attribute some physical interpretations in the geometrical
concepts under consideration.

Moreover in the framework of the weak gravitational field of a generalized
Finsler spacetime some applications for gravitational waves are given.

2 Linearized field theory of Randers space-

time

The behavior of particles in a gravitational and electromagnetic field is
expected to indicate that the physical geometry in the direction of a geomet-
rical unification is the Finsler geometry.

In a Finsler space the metric function F(x, y) can be considered as a
potential function since the metric tensor (gravitational potential)

gij(x, y) =
1

2

∂2F2

∂yi∂yj
(2)

is produced by this function. The metric of a Randers space is given by
virtue of (2) in the form [12],[27].

gij = αij +
2k

σ
ysαs(iAj) + k2AiAj +

k

σ
ylAlmij (3)

where σ =
√
αijyiyj, mij = αij−σ−2αisαjlysyl and A(ij) = 1

2
(Aij + Aji) . We

observe that the presence of an electromagnetic field in a region of spacetime
breaks the isotropy and the description of spacetime is given by two metrics,
one of which has a pseudo-Riemann structure aij(x) that corresponds to a
motion of a particle with mass m in the gravitational field and the second is
metric of a charged particle of mass m that corresponds to a Finsler space of
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metric gij(x, v) which represents a dynamical field. Connection coefficients
of pseudo FR space are produced by those metrics. In a FR space the second
term yibi can represent a measure of a cosmological anisotropy,a magnetic
field or a spin-velocity. This consideration is analogous to Rosen’s (1940)
in which at each point of space-time a Euclidean and pseudo-Riemannian
metric corresponds in each point of space-time.(Bimetric theory)

Finsler spaces are endowed with Cartan, Berwald connections and other
different types of connections. Cartan connection has very important proper-
ties (metric compatibility) for models are closely related to standard physics
[28],[29]. Berwald connection is not generally compatible with the ,metric
structure on total space, since it has ”weak” compatibility only on the h-
space on the tangent bundle. However for the case of a standard model
extension a Berwald structure can be used for Lorentz violation in relation
to gravitational waves e.g. [30]

The explicit form of Randers connection of Berwald-like coefficients can
be given in the form [31]

Llij = αlij + El
ij, (4)

where αlij are the Riemannian Cristoffel symbols and El
ij are given by

El
ij =

1

2

(
αijy

kF l
k + uiF

l
j + ujF

i
l

)
α−1 − 1

2
uiujy

kF l
kα
−3 (5)

with ui = ui(x, y) =
αijy

j

α(x,y)
α = α(x, y) = (αij(x)yiyj)

1/2
. We note from (4)

and (5) that the electromagnetic field enters in the connection coefficient of
this space.

The geodesics of the Randers space are produced by the first variation of
the action corresponding to the Lagrangian.

d

dλ

(
∂F
∂ym

)
− ∂F
∂xm

= 0 (6)

dym

dλ
+ Lmij (x, y)yiyj = 0 (7)

Because of (7) we get the well known Lorentz equation

d2xm

dλ2
+ αmij

dxi

dλ

dxj

dλ
+ kFm

j

dxj

dλ
= 0 (8)

Eq.(8) represents the equation of motion of a charged particle in a gravita-
tional and electromagnetic field, where λ represents an affine parameter.
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The equations of motion (8) under the perturbations hij can be written
in the form

d2xm

dλ2
+ α̃mij

dxi

dλ

dxj

dλ
+ kFm

j

dxj

dλ
= 0 (9)

where α̃mij = 1
2
nml (∂ihjl + ∂jhim − ∂lhij) are the connection coefficients of the

weak metric α̃ij. The Eq. (9) is useful for studying gravitational waves in a
pseudo-FR space.

The curvature tensor of a Randers space can be produced by using Berwald-
like connection coefficients in analogous to the form [31] for a weak field

H i
hjk = Ri

hjk + Ei
hjk (10)

where Ri
hjk is the Riemannian curvature tensor and Ei

hjk is given by

Ei
hjk =

1

2
Q[jk]

(
F i
hFjk + αhkF

m
j F

i
m − FhjF i

k

)
+Q[jk]

[
(uh∇kF

i
j + ymαhj∇kF

i
m + uj∇kF

i
h)α

−1 − ymuhujα−3∇kF
i
m

]
(11)

with α = α(x, y) = (αijy
iyj)1/2.

Relation (10) is rewritten

H i
hjk(x, y) = Λi

hjk(x) +Q[jk]

(
uh∇kF

i
j + · · · − ∇kF

i
m

)
(12)

with Λi
hjk = Ri

hjk + 1
2
Q[jk] (F

i
hFjk + · · · − FhjF i

k) and Q[jk] = 1
2

(Qkj −Qjk)
Applying the condtion

Q[jk]

(
uh∇cF

i
j + ẋmα̃hj∇kF

i
m + uj∇kF

i
h

)
α̃−1 − ẋmuhujα̃−3∇kF

i
m = 0 (13)

in (10) we get the Lagrangian of the classical gravitational and electromag-
netic fields

Λ = Λi
hjiα

hj = R + kFmnF
mn, k constant. (14)

The variation of action’s integral

δI = δ

∫
Λ
√
|g̃|d4x (15)

g = det(aij) (16)
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leads to the weak field equations(
Rmn −

1

2
α̃mnR

)
+ k

(
FnrF

r
m −

1

4
α̃mnFrsF

rs

)
= 0 (17)

which are Einstein - Maxwell field equations of the “gravito - electromag-
netic” of the Randers space for the vacuum under the condition (13). These
equations have the same form as in the Riemannian ansatz in the presence
of an electromagnetic field.

From a physical point of view the curvature H i
hjk can be considered as

a“gravito - electromagnetic curvature ” of the space. We can say that it
involves a gravito - electromagnetic “current” source. The metric of a weak
gravitational field can be decomposed into the flat Minkowski metric plus a
small perturbation

α̃ij = nij + hij, |hij| � 1. (18)

Under a linearized approach of the gravitational field, the Randers metric
function can be written in the form of a first approximation of the Rieman-
nian metric αij

F(x, y) =
√

(nij + hij(x, v)) vivj + kAiv
i (19)

where vi = dxi/dτ is the 4-velocity of the particle, nij = diag(1,−1,−1,−1)
is the Minkowski metric, |hij| � 1 represents small perturbations to the flat
spacetime metric and k is a constant. The linearized form of the metric
tensor, as introduced by (3), becomes

gij = nij + hij +
2k

σ́
vsns(iAj) + k2AiAj +

k

σ́
vlAlθij (20)

where σ́ =
√
nijvivj, θij = nij − σ́−2nsinjlvsvl and a(ij) = 1

2
(aij + aji) .

Considering in (20) the case where vs = (1, 0, 0, 0) we get the Finslerian
potential g00 of the Randers space for a test material point in the static case

g00 = 1 + h00 + k2φ2 + 2kφ (21)

with φ = A0. In the case of φ = 0 we get g00 = 1 +h00. This relation is useful
in order to derive the Riemannian or Newtonian limit from the equation of
motion in a Randers space. In this case the equation of motion has the form

v̇l + Ll00v
0v0 = v̇l + Ll00 = 0 (22)
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with

Lµ00 = −1

2
nµλ∂λh00. (23)

The full interpretation of Llij is given by (4).
The Finslerian potential g00 takes the value 1 for the values of electro-

magnetic vector potential

φ1,2 =
(
−1± (1− h00)1/2

)
(k)−1. (24)

The Cristoffel symbols and the curvature tensor of the linearized Randers
space will take the following form. By using (4) and (10) we get

L̃ilj = ãilj + hilj (25)

H̃ i
ljk = R̃i

ljk + hiljk (26)

where

R̃i
ljk =

1

2
nis
(
∂2[klhsj] − ∂2[jshlk]

)
(27)

ãijk are the linearized Riemannian Christoffel symbols and the curvature ten-
sor. From (25) and (26) the rest terms will be given in the form

hmij =
1

2

(
nijv

kFm
k + uiF

m
j + ujF

m
i

)
n−1 − 1

2
uiujv

kFm
k n
−3 (28)

hihjk =
1

2
Q[jk]

(
F i
hFjk + nhkF

m
j F

i
m − FhjF i

k

)
+Q[jk]

(
uh∂kF

i
j + vmnhj∂kF

i
m + uj∂kF

i
h

)
n−1 − vmuhujn−3∂kF i

m

(29)

By using Cartan covariant differentiation in a Randers space we can ex-
press the third curvature tensor of Cartan R̄i

jkl in the form [32]

R̄i
jhk = Ri

jhk +Di
jh|k −Di

jk|h +Di
hkD

m
jk −Di

mkD
m
jh

+ Ci
jm(Rm

0hk +Dm
0h|k −Dm

0k|h +Dm
shD

s
0k −Dm

skD
s
0h)

(30)

where Ri
jhk is the Riemannian curvature, the symbol | represents the Car-

tan covariant derivative and Di
jk is the difference tensor of the Finslerian
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gravitational field given by

Di
jk =k`iA(j,k) +

1

2
k
(
ωijA0,k + ωikA0,j − ωjkA0,sg

is
)
− Ci

jk

+ gisk
(
A[s,j]`k + A[s,k]`j

)
+
k

τ
αmt
[
gis(A([t,s]) + A[t,0]psτ)Cjkm

− Ci
km(A[t,j] + A[t,0]pjτ)− Ci

jm(A[t,k] + A[t,0]pkτ)
] (31)

where ωij(x, y) = τ (aij − k2AiAj) , τ = F/a1/2 and `i = yi/F . In a linearised
form the Cartan curvature tensor is expressed by

K̃i
jhk = R̃i

jhk + D̃i
jh|k − D̃i

jk|h + C̃i
jm

(
R̃m

0hk + D̃m
0h|k − D̃m

0k|h

)
(32)

where R̃i
jhk is given by (27) and D̃i

jh, C̃
i
jm represent the weak difference tensor

and the weak Cartan connection coefficients, C̃ijk = 1
2

∂g̃ij
∂yk

.

In (30) we have ignored terms D̃.
..D̃

.

.. because of the condition |hij| � 1. The
Ricci tensor of the weak ”gravito - electromagnetic” field is given by

K̃ij = K̃s
ijs. (33)

For a perfect fluid moving in a Randers space with Cartan curvature Ki
jhk

Einstein’s equations can be given in the form of weak field

K̃il = k

(
Til(x, V (x))− 1

2
T κκ gij

)
(34)

with K̃il = R̃il + Eil, where K̃il is the Ricci tensor, R̃il is the Riemannian
one, Eil is the contraction of Ei

jkl by (10) and Til the energy - momentum
tensor of FR space. Randers type space-time in cosmological considerations
for a weak anisotropic field ua with ||ua|| � 1 has been studied in [13].

3 Weak Deviation of geodesics.Raychaudhuri

equation

The deviation of geodesics play an important role in General Relativ-
ity and Gravitation. In the Finslerian space-time it has been studied from
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mathematical and physical point of view [33],[34],[35],[36]. In a pseudo-
Randers space the deviation of geodesics can be expressed by using ”gravito-
electromagnetic” curvature (10)

δ2ξi

δλ2
+ H̄ i

jhk(x, v)ξjvhvk = 0 (35)

where δξi

δλ
= ξi|hv

h and ξi|h = ∂ξi

∂xh
+ R̄i

hk(x, v)ξk, with λ affine parameter.

R̄i
hk are the Cartan connection coefficients, ξi represents the deviation vector

and vk the tangent vectors of a geodesic surface included in the Randers
spacetime. We note from (35) that the deviation equation has two terms. The
first term corresponds to the gravitational deviation, that will be observed
if there is no electromagnetic field and it is associated with the Ri

hjk part of
the curvature tensor. The other term corresponds to a mixed geometrical
and electromagnetic deviation and is associated with the Ei

hjk part of the
curvature tensor. The second term of deviation is connected to the force
that two freely falling charged particles would exert to each other. Studying
this case in a Riemannian spacetime has the consequence that the force does
not necessarily result as a natural geometric effect as it does in a Finsler
spacetime. If the Ei

hjk vanishes then the deviation equation is reduced to the
well known one of the Riemannian spacetime, namely

δ2zi

δu2
+Ri

jklz
jvkvl = 0 (36)

Physically this means that we have two freely falling particles in the
tidal field Ri

hjk of spacetime. In the case where Ri
hjk vanishes, we infer that

the first term of the Randers metric corresponds to a Minkowski metric and
the Finsler - Randers space becomes v - locally Minkowski [37].

F(x, v) =
√
nµνvµvν + kAi(x)vi (37)

The only force that influences the two charged particles is due to the presence
of the charged electromagnetic field. The deviation equation takes the form

δ2zi

δu2
+ Ei

jklz
jvkvl = 0 (38)

where Ei
jkl is given by (11). In this case the geometrical properties of the

field are characterized by a homogeneous and anisotropic space. The met-
ric fundamental tensor depends only on the velocities, which produce the
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anisotropic properties of the curved Finsler spacetime. Consequently there
exists a frame of reference, where R̄i

hjk vanishes. Under these circumstances
the geodesic coordinates can be introduced for particles moving along these
geodesics.

In a cosmological consideration the formula(37) can be given by F(x, V ) =√
nµνV µV ν + kWi(x)V i where V = H̃d represents cosmological velocity de-

pending on the cosmological Hubble parameter H̃ which is defined in the
anisotropic Randers space-time with H̃ =

√
H2 +Hzt cf. [13], Wi repre-

sents an anisotropic field, Zt the variation of anisotropy and d the distance.
Such a consideration can be provided by a Finslerian osculating geometrical
framework.If this field Wi comes from by a curl the geodesics of this model
are Riemannian. Gravitational waves in locally anisotropic spaces generate
polarization patterns of the cosmic microwave background.

It is well known that the gravitational waves are connected to the devia-
tion of geodesics. In order to study the weak field limit of a Randers space
related to the deviation of the charged particles it is necessary to take into
account relations (26) and (35). This is reasonable since in order to detect a
gravitational wave at least two particles are needed.
Thus the deviation of geodesics of the weak Randers space is written in the
form

d2zi

dτ 2
+ h̃iljm

dzj

dτ

dxl

dτ

dxm

dτ
= 0 (39)

d2zi

dτ 2
+
(
εiljm + hiljm+

) dxl
dτ

dzj

dτ

dxm

dτ
= 0 (40)

If we consider our test particles to be moving slowly then we can express the
4-velocities as a unit vector in the time direction. Hence we write

dxi

dτ
= (1, 0, 0, 0). (41)

In order to compute the Riemannian tensor in a first approximation we get
from (40)

εi0j0 =
1

2
nik (εjk,00 − ε0j,k0 − ε0k,0j + ε00,kj) (42)

In our case εi0 = 0 and the Riemannian tensor takes the form

εi0j0 =
1

2
εij,00. (43)
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The second term of (40) hiljm because of (41) and (29) becomes

hi0j0 = 2F i
0F

0
j + uj∂0F

i
0. (44)

Furthermore (40) will take the form because of (43) and (44)

∂2zi

∂τ 2
+

(
1

2

∂2εij
∂τ 2

+ 2F i
0F

0
j + uj

∂F i
0

∂τ

)
∂zj

∂τ
= 0. (45)

The equation (45) coincides with the corresponding equation for a weak field
limit of the Riemannian case, which is given in its full form by

d2nµ

ds2
+Rµ

νκλn
κvνvλ = Φµ (46)

with

Φµ = k

(
dF µ

κ

ds
vκ + F µ

ν F
ν
κ v

κ

)
, k : constant. (47)

In general Φµ represents a non-gravitational force, for instance a spring.
The difference between (46) and (35) is that in (46) the electromagnetic
field has been added ad hoc. This means that the term Φµ plays the role
of the interaction external force between two nearby charged masses, mov-
ing in non-geodesical paths. In the equation (35) of the Randers space the
electromagnetic field is incorporated in the geometry. In this approach the
two charged masses move in geodesics of the Finsler space and their rel-
ative acceleration is determined by the curvature of the gravitational and
electromagnetic fields, which is produced by the energy momentum tensor.
Randers-type spaces best express a profound relation between physics and
geometry.

An extension of the geodesic deviation equations constitutes the Ray-
chadhuri equation. Raychadhuri equation is of important significance in Rel-
ativity theory and Cosmology because of its connection with singularities e.g.
[38],[39],[40]. In Finsler-Randers space-time this equation has been studied
in a previous paper [43]. Its form in the weak Finslerian limit is given by

dθ̃

dτ
= −1

3
θ̃2 − σ̃ikσ̃ik + ω̃ikω̃

ik −Ki`V
iV ` + V̇ i

;i (48)

whereKil represents the weak Cartan tensor,θ̃, ω̃ik, σ̃ik are the expansion,vorticity
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and the shear are defined by the following forms:

θ̃ = Λijh
ij = V i

|i − Ci
imV̇

m (49a)

ω̃ik = Λ[ik] + V̇iVk − V̇kVi (49b)

σ̃ik = Λ(ik) −
1

3
θ̃hik − 2CikmV

m − V̇iVk − V̇kVi (49c)

where Λ(ik) = Vi;k is the covariant derivative of the oscullating Riemannian

space V i a unit vector V iVi = 1 In the case of geodesics the last term V̇ i
;i

vanishes in (48) and (49). The introduction of Cartan tensor in (48) assigns
an anisotropic structure for the Raychaudhuri equation. The linearized Ray-
chaudhuri equation in a Randers spacetime in a first approach is expressed
without vorticity and shear by

dθ̃

dτ
= −1

3
θ̃2 − K̃i`V

iV ` (50)

In the case that ˙̃θ = 0, σ̃ij = 0, ω̃ij = constant, from (48) the tidal field
KilV

iV l is due to the vorticity ω̃ which plays the role of vacuum energy (cos-
mological constant). It is analogous to a centrifugal field of the Newtonian
theory. It counterbalances the tidal field.

Remark The fundamental sense of photon surfaces and their geometry has
been defined and developed in [41],[42] for a timelike surface in a spherical
symmetric space with determined properties.

In a pseudo-Finsler space-time M with spherically symmetric metric [35]
in which σ̃ij = 0 and ω̃ij = 0, we can analogously consider a Finslerian
photon surface S, where S represents a timelike surface of M . Here the
Raychaudhuri equation takes the form

dθ(2)
dτ

= −1

2
θ2(2) −K

(3)
il X

iX l, (51)

where θ(2) denotes the expansion of a vector field X in the surface S, τ the

affine parameter and K
(3)
il the Ricci tensor of Cartan curvature.

On a physical viewpoint the anisotropic Cartan tensor is introduced in
the geometry of spacetime because of a primordial vector field in the Finsler-
Randers spacetime. Such a case has been studied in [13] where the linearized
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Raychaudhuri equation stands

1

3
θ̃2q̃ = 4πG(µ+ 3P )

H

H̃
+ f(α, α̇, α̈, zt) (52)

where q̃, µ, p, α, zt represent the deceleration parameter, the density of mat-
ter, the pressure, the scale factor and the variation of anisotropy, which is
connected to Cartan connection component zt = C000,0.

The Raychaudhuri equations can also be derived in the framework of a
tangent bundle TM of a n-dimensional manifold by using of d-connection
and the Ricci-identities. In this case we consider the d-curvature Ri

jkl and
the Ricci identities for a tangent horizontal vector field X = XH = X iδ/δxi

along a congruence of geodesics on TM [37]. So we have the relation

X i
|kl −X i

|lk = Ri
jklX

j − T hklX i
|h −Ra

klX
i|a, (53)

or
X lX i

|kl = X i
|lkX

l +Ri
jklX

jX l − T hklX i
|hX

l −Ra
klX

i|aX l. (54)

Because of geodesics the relation (X lX i
|l)|k = 0 is valid so we have

X lX i
|kl = −X lX|kX

i
|l +Ri

jklX
jX l − T hklX i

|hX
l −Ra

klX
i|aX l. (55)

Taking the trace of the previous equation we have

X lh̃kiX
i
|kl = −X l

|kX
i
|lh̃

k
i +Ri

jklX
jX lh̃ki − T hklX i

|hX
lh̃ki −Ra

klX
i|aX lh̃ki . (56)

We decompose the h-covariant derivative with kinematical terms

X i
|l =

1

n− 1
Θ̃h̃il + σ̃il + ω̃il , (57)

where Θ̃, σ̃, ω̃ represent the expansion, shear and vorticity for the extended
congruence of geodesics on TM, which are defined as

Θ̃ = X i
|lh̃

l
i, (58)

σ̃il = Xi|l +Xl|i −
1

3
Θ̃h̃il, (59)

ω̃il = Xi|l −Xl|i, (60)

with
h̃il = gil −XiXl (61)
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the projection operator, hil gives us h̃ilX
i = 0 for a normalized Xi. In the

above mentioned relations, (57), (58), we used

h̃il = gikh̃lk. (62)

We finally get from (56)

X lΘ̃|l =
dΘ̃

dτ
= RklX

kX l − T hliX i
|hX

l −Ra
liX

i|a −X l
|kX

k
|l = RklX

iX l

−T hli
(

1

n− 1
Θ̃h̃ih + σ̃ih + ω̃ih

)
−Ra

li

(
1

n− 1
Θh̃ia + σia + ωia

)
− 1

n− 1
Θ̃l−σlkσkl −ωlkωkl .

(63)

where we put

X i|a =
1

n− 1
Θ̃h̃ia + σ̃ia + ω̃ia,

with h̃ia = hbaδ
i
cδ
c
b , σ

i
a = σbaδ

i
cδ
c
b , ω

i
a = ωbaδ

i
cδ
c
b and δic represent the generalized

Kronecker symbols connecting with h-bases and v-bases. The equation (63)
is the Raychadhuri equation for the horizontal space of the tangent bundle.

Ra
li =

∂Na
l

∂xi
− ∂Na

i

∂xl
(64)

represents the curvature of non-linear connection.
By using of d-curvature Sabcd, the Ricci identities are written

Xa|bc −Xa|cb = SadbcX
d − SdbcXa|d, (65)

where the vector fieldX = Xa ∂
∂ya

belongs to the vertical space Sabc = Ca
bc−Ca

c b
represent the torsion and Ca

bc the d-connection coefficients of the vertical
space. In analogy to the consideration of Finslerian fluids cf.[43] we can
get the Raychaudhuri equations. For the definitions of the decomposition
of vertical covariant derivative of vertical geodesics expansion, shear and
rotation we use the relations

Xa|b =
1

3
Θhab + σab + ωab (66)

where the expansion Θ is given by

Θ = Xa|bhba = Xa|a, (67)
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hab(x, y) represents the v-metric on TM which is connected with the h-metric
gij(x, y) = δai δ

b
jhab(x, y)σab and ωab. We define the shear and rotation by

σab = Xa|b +Xb|a −
1

3
Θhab, (68)

ωab = Xa|b −Xb|a. (69)

Because of the above mentioned relations one obtains an expression for
the Raychaudhuri equation in the vertical space in the forms

XcΘ|c =
dΘ

dτ
= SdcX

dXc − SdcaXa|dXc −Xc|bXb|c

= − 1

n− 1
Θ2 − σabσba − ωabωba + SdcX

dXc − SdcaXc

(
1

n− 1
Θhab + σab + ωab

)
(70)

The Raychaudhuri equation can also be derived on the tangent bundle of a
Finsler-Randers space-time as well as for its weak field limit by considering
the analogous curvature in the rel. (63).

Applications:

1. In the (x0, x1, x2, x3) coordinates of an inertial frame generalized Finsler
metrics that are close to the flat metric can be written

gαβ(x, y) = nαβ + εαβ(x, y) (71)

where y = dx
dt

and εαβ(x, y) are small anisotropic perturbations to the flat
spacetime. These metric perturbations describe a gravitational wave. The
line - element for a plane gravitational wave spacetime can be expressed in
the form

ds2 = dt2 −
(
1 + f [(x0, x3), y]dx21

)
−
(
1− f [(x0, x3), y]dx22

)
+ dx23 (72)

where the function f(x, y) = εαβ(x, y), with∣∣f [(x0 − x3), y]
∣∣� 1. (73)

If the wave has a definite frequancy ω, amplitude α and phase δ we can write

f [(x0 − x3), y] = α sin[ω(x0 − x3) + δ] y. (74)
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If we focus on the plane z = 0, because of the weak field (71) we can write

α sin(ωt+ δ) yk = hij(t, 0)ninjyk (75)

where ni is a unit vector on the tangent plane R2, which is identical to the
euclidean plane R2. Equation (75) shows how gravitational waves can be
detected by observing the relative motion of two test masses. This is one
way of defining the local curvature of spacetime in general. Before the wave
passes the spacetime is flat. After the wave passes the motion of a test mass
is given by

dki

dτ
+ C̃i

αβk
αkβ = 0 (76)

where C̃i
αβ are the linearized Cartan connection coefficients, which denote

a propagation of gravitational waves in an anisotropic spacetime.

2. In the previous application the coordinates xi, i = 0, 1, 2, 3 are inde-
pendent of time. Distances between test masses in Euclidean plane can be
calculated from X(t), Y (t) coordinates by using a Randers metric. We can
put the coordinates in the form

X = (1 +
1

2
α sinωt) x1 (77a)

Y = (1− 1

2
α sinωt) x2 (77b)

(77c)

then

Ẋ =
dX

dt
=

1

2
αω cosωt x1 (78a)

Ẏ =
dY

dt
= −1

2
αω cosωt x2 (78b)

A plane gravitational wave of the form (72) with f [(x0−x3), y3] = α sin[ω(x0−
x3)] y3, and y3 = (0, 0, 1, 0) propagates in the y3 direction. Some test masses
in the x− y plane are as rest in a circle about a central test mass. After the
gravitational wave passes in time t the circle is squeezed in the Y-direction
and expanded in the X-direction, therefore the circle is transformed to an
elliptic shape.
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We define the indicartix curve Ip to be a circle with center 0 and radius√
1 + f(x, y) OP where P (x, y) is an arbitary point and f(x, y) is a positive

valued function. We can apply the Randers metric in order to calculate the
distances between the masses [15]. Therefore we have

L(x, y) =
λ+

√
f(x, y)ρ2 + λ2

f(x, y)
(79)

where

ρ2 =
Ẋ2 + Ẏ 2

X2 + Y 2
λ =

XẊ + Y Ẏ

X2 + Y 2
(80)

Conclusions

We studied the behaviour of particles moving in a gravitational and electro-
magnetic field with the physical geometry of a Finsler–Randers (FR) space.
Cartan and Berwald connections are applied for studying a linearized version
of a weak field limit in F-R spaces.

In virtue of curvature tensors of the space of considerations some physical
characterizations and interpretations in the sense of a �gravito–electromagnetic
curvature �are given. Such a concept could play a role in the bending of light
geodesics and gravitational lensing in a region of locally anisotropic space-
time.

In paragraph 3 the Raychaudhuri equations are extended and they were
derived in the framework of a tangent bundle. This consideration can give
an additional interest to a string theory.

Finally, some applications of Randers metric for gravitational waves are
presented.
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