Gravito-electromagnetic resonances

Christos Tsagas

Department of Physics
Aristotle University of Thessaloniki

NEB XV: Hania, June 20, 2012

Main Objective/Question

Consider the interaction between the Weyl and the Maxwell fields

Main Objective/Question

Consider the interaction between the Weyl and the Maxwell fields

Investigate the possibility of resonances?

Gravitational waves

$1+3$ covariant description

－Relative to an ohserver with 4 －velocity $U_{a}\left(U_{a} u^{a}=-1\right)$ ．
－By the Weyl part of the curvature：the electric $\left(E_{a b}\right)$ and magnetic $\left(H_{a b}\right)$ Weyl tensors．
－With $E_{a b}=E_{\langle a b\rangle}, H_{a b}=H_{\langle a b\rangle} \quad$ and $\quad D^{b} E_{a b}=0=D^{b} H_{a b}$ ．

The role of the shear

－In highly symmotric spacetimes（e．g．Minkowski，FRW）$E_{a b}, H_{a b} \rightarrow \sigma_{a b}$ ．
－There，gravitational waves are monitored by the shear，with $\sigma_{a b}=\sigma_{\langle a b\rangle}$ and $\mathrm{D}^{b} \sigma_{a b}=0$ ．

Isolating gravitational waves

－The conditions $D^{b} E_{a b}=0=D^{b} H_{a b}=D^{b} \sigma_{a b}$ must be satisfied at all times．
On Minkowski and FRW backgrounds，we set $A_{a}=0=\omega_{a}=D_{a} \rho=\mathrm{D}_{a} \Theta$（to 1st order）．

Gravitational waves

$1+3$ covariant description

- Relative to an observer with 4 -velocity $u_{a}\left(u_{a} u^{a}=-1\right)$.
- By the Weyl part of the curvature: the electric $\left(E_{a b}\right)$ and magnetic $\left(H_{a b}\right)$ Weyl tensors.
- With $E_{a b}=E_{\langle a b\rangle}, H_{a b}=H_{\langle a b\rangle} \quad$ and $\quad D^{b} E_{a b}=0=D^{b} H_{a b}$.

The role of the shear
 - In highly symmetric spacetimes (e.g. Minkowski, FRW) $E_{a b}, H_{a b} \rightarrow \sigma_{a b}$
 - There, gravitational waves are monitored by the shear, with $\sigma_{a b}=\sigma_{\langle a b\rangle}$ and $D^{b} \sigma_{a b}=0$

Isolating gravitational waves

- The conditions $D^{h E_{a b}}=0=D^{b} H_{a b}=D^{b} \sigma_{a b}$ must be satisfied at all times.

On Minkowski and FRW backgrounds, we set $A_{a}=0=\omega_{a}=\mathrm{D}_{a} \rho=\mathrm{D}_{a} \Theta$ (to 1st order)

Gravitational waves

$1+3$ covariant description

- Relative to an observer with 4-velocity $u_{a}\left(u_{a} u^{a}=-1\right)$.
- By the Weyl part of the curvature: the electric $\left(E_{a b}\right)$ and magnetic $\left(H_{a b}\right)$ Weyl tensors.
- With $E_{a b}=E_{\langle a b\rangle}, H_{a b}=H_{\langle a b\rangle}$ and $D^{b} E_{a b}=0=D^{b} H_{a b}$.

The role of the shear

- In highly symmetric spacetimes (e.g. Minkowski, FRW) $E_{a b}, H_{a b} \rightarrow \sigma_{a b}$.
- There, gravitational waves are monitored by the shear, with $\sigma_{a b}=\sigma_{\langle a b\rangle}$ and $\mathrm{D}^{b} \sigma_{a b}=0$.

Isolating gravitational waves
 - The condtions $D^{h} E_{a b}=0=D^{b} H_{a b}=D^{b} \sigma_{a b}$ must be satisfied at all times.
 On Minkowski and FRW backgrounds, we set $A_{a}=0=\omega_{a}=D_{a} \rho=\mathrm{D}_{a} \Theta$ (to 1st order).

Gravitational waves

1+3 covariant description

- Relative to an observer with 4-velocity $u_{a}\left(u_{a} u^{a}=-1\right)$.
- By the Weyl part of the curvature: the electric $\left(E_{a b}\right)$ and magnetic $\left(H_{a b}\right)$ Weyl tensors.
- With $E_{a b}=E_{\langle a b\rangle}, H_{a b}=H_{\langle a b\rangle}$ and $D^{b} E_{a b}=0=D^{b} H_{a b}$.

The role of the shear

- In highly symmetric spacetimes (e.g. Minkowski, FRW) $E_{a b}, H_{a b} \rightarrow \sigma_{a b}$.
- There, gravitational waves are monitored by the shear, with $\sigma_{a b}=\sigma_{\langle a b\rangle}$ and $\mathrm{D}^{b} \sigma_{a b}=0$.

Isolating gravitational waves

- The conditions $\mathrm{D}^{b} E_{a b}=0=\mathrm{D}^{b} H_{a b}=\mathrm{D}^{b} \sigma_{a b}$ must be satisfied at all times.
- On Minkowski and FRW backgrounds, we set $A_{a}=0=\omega_{a}=\mathrm{D}_{a} \rho=\mathrm{D}_{a} \Theta$ (to 1st order).

Source－free electromagnetic fields

$1+3$ covariant description

－Rolative to an oheorver with 4－velocity $U_{a}\left(U_{a} U^{a}=-1\right)$ ．
－By the electric $\left(E_{a}\right)$ and magnetic $\left(B_{a}\right)$ fields．

Faraday tensor

$$
F_{a b}=2 E_{[a} u_{b]}+\varepsilon_{a b c} B^{c}
$$

Maxwell＇s equations

－Ampere＇s law：$\dot{\dot{E}}(a)=-\frac{2}{3} \ominus E_{a}+\left(\sigma_{a b}+\omega_{a b}\right) E^{b}+\varepsilon_{a b c} A^{b} B^{c}+$ curl $_{a}$
－Faraday＇s law：$\dot{B}_{\langle a\rangle}=-\frac{2}{3} \Theta B_{a}+\left(\sigma_{a b}+\omega_{a b}\right) B^{b}-\varepsilon_{a b c} A^{b} E^{c}-\operatorname{curl} E_{a}$
－Coulomb＇s law：DaE $=-2 \omega^{a} B_{a}$ and Gauss＇law：Da $B_{a}={ }^{2} \omega^{2} E_{a}$

Source-free electromagnetic fields

$1+3$ covariant description

- Relative to an observer with 4-velocity $u_{a}\left(u_{a} u^{a}=-1\right)$.
- By the electric (E_{a}) and magnetic (B_{a}) fields.

Faraday tensor

$F_{a b}=2 E_{[a} u_{b]}+\varepsilon_{a b c} B^{C}$

Maxwell's equations

- Ampere's law: $\dot{E_{(a)}}=-\frac{2}{3} \Theta E_{a}+\left(\sigma_{a b}+\omega_{a b}\right) E^{b}+\varepsilon_{a b c} A^{b} B^{c}+$ curl $_{a}$
- Faraday's law: $\dot{B}_{\langle a\rangle}=-\frac{2}{3} \Theta B_{a}+\left(\sigma_{a b}+\omega_{a b}\right) B^{b}-\varepsilon_{a b c} A^{b} E^{c}-\operatorname{curl} E_{a}$
- Coutomb's law: $D^{a} E_{a}=-2 \omega^{a} B_{a}$ and Gauss'law: $D^{a} B_{a}=2 \omega^{2} E_{a}$

Source-free electromagnetic fields

$1+3$ covariant description

- Relative to an observer with 4-velocity $u_{a}\left(u_{a} u^{a}=-1\right)$.
- By the electric (E_{a}) and magnetic (B_{a}) fields.

Faraday tensor

$$
F_{a b}=2 E_{[a} u_{b]}+\varepsilon_{a b c} B^{C} .
$$

Maxwell's equations

- Ampore's law. $\dot{E}_{(a)}=-\frac{2}{3} \theta E_{a}+\left(\sigma_{a b}+\omega_{a b}\right) E^{b}+\varepsilon_{a b a} A^{b} B^{c}+$ curl B_{a}
- Faraday's law: $\dot{B}_{\langle a\rangle}=-\frac{2}{3} \Theta B_{a}+\left(\sigma_{a b}+\omega_{a b}\right) B^{b}-\varepsilon_{a b c} A^{b} E^{c}-$ curl $_{a}$
- Coulomb's law: $\mathrm{D}^{a} E_{a}=-2 \omega^{a} B_{a}$ and Gauss' law: $\mathrm{D}^{a} B_{a}=2 \omega^{a} E_{a}$

Source-free electromagnetic fields

$1+3$ covariant description

- Relative to an observer with 4-velocity $u_{a}\left(u_{a} u^{a}=-1\right)$.
- By the electric (E_{a}) and magnetic (B_{a}) fields.

Faraday tensor

$$
F_{a b}=2 E_{[a} u_{b]}+\varepsilon_{a b c} B^{c} .
$$

Maxwell's equations

- Ampere's law: $\dot{E}_{\langle a\rangle}=-\frac{2}{3} \Theta E_{a}+\left(\sigma_{a b}+\omega_{a b}\right) E^{b}+\varepsilon_{a b c} A^{b} B^{c}+\operatorname{curl} B_{a}$.
- Faraday's law: $\dot{B}_{\langle a\rangle}=-\frac{2}{3} \Theta B_{a}+\left(\sigma_{a b}+\omega_{a b}\right) B^{b}-\varepsilon_{a b c} A^{b} E^{c}-\operatorname{curl} E_{a}$.
- Coulomb's law: $D^{a} E_{a}=-2 \omega^{a} B_{a}$ and Gauss' law: $D^{a} B_{a}=2 \omega^{a} E_{a}$.

Gravitational waves on Minkowski space

Shear wave equation
At the linear level

$$
\ddot{\sigma}_{a b}-\mathrm{D}^{2} \sigma_{a b}=0 .
$$

Harmonic splitting

Set
with

Solution

Then
and
$\sigma_{(k)}=\mathcal{W} \sin (k t+\varphi)$

Gravitational waves on Minkowski space

Shear wave equation

At the linear level

$$
\ddot{\sigma}_{a b}-\mathrm{D}^{2} \sigma_{a b}=0 .
$$

Harmonic splitting
Set

$$
\sigma_{a b}=\sum_{k} \sigma_{(k)} \mathcal{Q}_{a b}^{(k)},
$$

with

$$
\mathrm{D}_{a} \sigma_{(k)}=0=\dot{\mathcal{Q}}_{a b}^{(n)} \quad \text { and } \quad \mathrm{D}^{2} \mathcal{Q}_{a b}^{(k)}=-k^{2} \mathcal{Q}_{a b}^{(k)} .
$$

Solution

Then,
and

$$
\sigma_{(k)}=\mathcal{W} \sin (k t+\varphi)
$$

Gravitational waves on Minkowski space

Shear wave equation

At the linear level

$$
\ddot{\sigma}_{a b}-\mathrm{D}^{2} \sigma_{a b}=0
$$

Harmonic splitting

Set

$$
\sigma_{a b}=\sum_{k} \sigma_{(k)} \mathcal{Q}_{a b}^{(k)},
$$

with

$$
\mathrm{D}_{a} \sigma_{(k)}=0=\dot{\mathcal{Q}}_{a b}^{(n)} \quad \text { and } \quad \mathrm{D}^{2} \mathcal{Q}_{a b}^{(k)}=-k^{2} \mathcal{Q}_{a b}^{(k)} .
$$

Solution

Then,

$$
\ddot{\sigma}_{(k)}+k^{2} \sigma_{(k)}=0
$$

and

$$
\sigma_{(k)}=\mathcal{W} \sin (k t+\varphi)
$$

Electromagnetic waves on Minkowski space

EM wave equation
At the linear level

$$
\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=0 \quad \text { and } \quad \ddot{B}_{a}-\mathrm{D}^{2} B_{a}=0 .
$$

Harmonic splitting

Set

Solution

Then

$$
\ddot{E}_{(n)}+n^{2} E_{(n)}=0 \quad \text { and } \quad \ddot{B}_{(n)}+n^{2} B_{(n)}=0
$$

with

Electromagnetic waves on Minkowski space

EM wave equation

At the linear level

$$
\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=0 \quad \text { and } \quad \ddot{B}_{a}-\mathrm{D}^{2} B_{a}=0 .
$$

Harmonic splitting

Set

$$
E_{a}=\sum_{n} E_{(n)} \mathcal{Q}_{a}^{(1)(n)} \quad \text { and } \quad B_{a}=\sum_{n} B_{(n)} \mathcal{Q}_{a}^{(2)(n)}
$$

with

$$
\mathrm{D}_{\mathrm{a}} E_{(n)}=0=\mathrm{D}_{a} B_{(n)}=\dot{\mathcal{Q}}_{a}^{(i)(n)} \quad \text { and } \quad \mathrm{D}^{2} \mathcal{Q}_{a}^{(i)(n)}=-n^{2} \mathcal{Q}_{a}^{(i)(n)}, \quad(i=1,2)
$$

Solution

Then

$$
\ddot{E}_{(n)}+n^{2} E_{(n)}=0 \quad \text { and } \quad \ddot{B}_{(n)}+n^{2} B_{(n)}=0
$$

with

Electromagnetic waves on Minkowski space

EM wave equation

At the linear level

$$
\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=0 \quad \text { and } \quad \ddot{B}_{a}-\mathrm{D}^{2} B_{a}=0 .
$$

Harmonic splitting

Set

$$
E_{a}=\sum_{n} E_{(n)} \mathcal{Q}_{a}^{(1)(n)} \quad \text { and } \quad B_{a}=\sum_{n} B_{(n)} \mathcal{Q}_{a}^{(2)(n)}
$$

with

$$
\mathrm{D}_{\mathrm{a}} E_{(n)}=0=\mathrm{D}_{a} B_{(n)}=\dot{\mathcal{Q}}_{a}^{(i)(n)} \quad \text { and } \quad \mathrm{D}^{2} \mathcal{Q}_{a}^{(i)(n)}=-n^{2} \mathcal{Q}_{a}^{(i)(n)}, \quad(i=1,2)
$$

Solution

Then,

$$
\ddot{E}_{(n)}+n^{2} E_{(n)}=0 \quad \text { and } \quad \ddot{B}_{(n)}+n^{2} B_{(n)}=0
$$

with

$$
E_{(n)}=B_{(n)}=\mathcal{M} \sin (n t+\vartheta) .
$$

Gravito-electromagnetic interaction

Gravitationally driven EM waves

To second order
$\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=\sigma_{a b} \dot{\tilde{E}}^{b}+\varepsilon_{a b c} \tilde{B}_{d} \mathrm{D}^{b} \sigma^{c d}-2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{B}^{d\rangle}-\mathcal{R}_{a b} \tilde{E}^{b}-E_{a b} \tilde{E}^{b}+H_{a b} \tilde{B}^{b}$
and
$\ddot{B}_{a}-\mathrm{D}^{2} B_{a}=\sigma_{a b} \dot{\tilde{B}}^{b}-\varepsilon_{a b c} \tilde{E}_{d} \mathrm{D}^{b} \sigma^{c d}+2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{E}^{d\rangle}-\mathcal{R}_{a b} \tilde{B}^{b}-E_{a b} \tilde{B}^{b}-H_{a b} \tilde{E}^{b}$, where $\tilde{E}_{a}, \tilde{B}_{a}$ and E_{a}, B_{a} are the original and the gravitationally driven EM fields.

Auxiliary relations
To first order

and

Gravito-electromagnetic interaction

Gravitationally driven EM waves

To second order
$\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=\sigma_{a b} \dot{\tilde{E}}^{b}+\varepsilon_{a b c} \tilde{B}_{d} \mathrm{D}^{b} \sigma^{c d}-2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{B}^{d\rangle}-\mathcal{R}_{a b} \tilde{E}^{b}-E_{a b} \tilde{E}^{b}+H_{a b} \tilde{B}^{b}$
and
$\ddot{B}_{a}-\mathrm{D}^{2} B_{a}=\sigma_{a b} \dot{\tilde{B}}^{b}-\varepsilon_{a b c} \tilde{E}_{d} \mathrm{D}^{b} \sigma^{c d}+2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{E}^{d\rangle}-\mathcal{R}_{a b} \tilde{B}^{b}-E_{a b} \tilde{B}^{b}-H_{a b} \tilde{E}^{b}$,
where $\tilde{E}_{a}, \tilde{B}_{a}$ and E_{a}, B_{a} are the original and the gravitationally driven EM fields.

Auxiliary relations

To first order

$$
\mathcal{R}_{a b}=E_{a b}, \quad E_{a b}=-\dot{\sigma}_{a b}
$$

and

$$
H_{a b}=\operatorname{curl} \sigma_{a b} .
$$

Gravito-electromagnetic interaction

Gravitationally driven EM waves

To second order

$$
\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=\sigma_{a b} \dot{\tilde{E}}^{b}+2 \dot{\sigma}_{a b} \tilde{E}^{b}+\varepsilon_{a b c} \tilde{B}_{d} \mathrm{D}^{b} \sigma^{c d}-2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{B}^{d\rangle}+\tilde{B}^{b} \mathrm{curl} \sigma_{a b}
$$

and

$$
\ddot{B}_{a}-\mathrm{D}^{2} B_{a}=\sigma_{a b} \dot{\tilde{B}}^{b}+2 \dot{\sigma}_{a b} \tilde{B}^{b}-\varepsilon_{a b c} \tilde{E}_{d} \mathrm{D}^{b} \sigma^{c d}+2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{E}^{d\rangle}-\tilde{E}^{b} \operatorname{curl} \sigma_{a b} .
$$

Simplify
Ignoring "backreaction" terms

Gravito-electromagnetic interaction

Gravitationally driven EM waves

To second order

$$
\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=\sigma_{a b} \dot{\tilde{E}}^{b}+2 \dot{\sigma}_{a b} \tilde{E}^{b}+\varepsilon_{a b c} \tilde{B}_{d} \mathrm{D}^{b} \sigma^{c d}-2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{B}^{d\rangle}+\tilde{B}^{b}{ }_{\mathrm{c}}{ }^{2} l \sigma_{a b}
$$

and

$$
\ddot{B}_{a}-\mathrm{D}^{2} B_{a}=\sigma_{a b} \dot{\tilde{B}}^{b}+2 \dot{\sigma}_{a b} \tilde{B}^{b}-\varepsilon_{a b c} \tilde{E}_{d} \mathrm{D}^{b} \sigma^{c d}+2 \varepsilon_{a b c} \sigma^{b}{ }_{d} \mathrm{D}^{\langle c} \tilde{E}^{d\rangle}-\tilde{E}^{b} \operatorname{curl} \sigma_{a b} .
$$

Simplify

Ignoring "backreaction" terms

$$
\ddot{E}_{a}-\mathrm{D}^{2} E_{a}=\sigma_{a b} \dot{\tilde{E}}^{b}+2 \dot{\sigma}_{a b} \tilde{E}^{b}
$$

and

$$
\ddot{B}_{a}-\mathrm{D}^{2} B_{a}=\sigma_{a b} \dot{\tilde{B}}^{b}+2 \dot{\sigma}_{a b} \tilde{B}^{b} .
$$

The gravitationally driven EM wave

Monochromatic waves

$$
\begin{aligned}
& \ddot{E}_{(\ell)}+\ell^{2} E_{(\ell)}=\sigma_{(k)} \dot{\tilde{E}}(n)+2 \dot{\sigma}_{(k)} \tilde{E}^{(n)}, \\
& \ddot{B}_{(\ell)}+\ell^{2} B_{(\ell)}=\sigma_{(k)} \dot{\tilde{B}}^{(n)}+2 \dot{\sigma}_{(k)} \tilde{B}^{(n)},
\end{aligned}
$$

where

$$
\tilde{E}_{(n)}, \tilde{B}_{(n)}=\mathcal{M} \sin (n t+\vartheta), \quad \sigma_{(k)}=\mathcal{W} \sin (k t+\varphi),
$$

and

$$
\ell^{2}=k^{2}+n^{2}+2 k n \cos \phi .
$$

Forced oscillations

For $\vartheta, \varphi=0$,

$$
\begin{aligned}
& \ddot{E}_{(\ell)}+\ell^{2} E_{(\ell)}=\mathcal{C}_{+} \sin [(k+n) t]+\mathcal{C}_{-} \sin [(k-n) t] \\
& \ddot{B}_{(\ell)}+\ell^{2} B_{(\ell)}=\mathcal{C}_{+} \sin [(k+n) t]+\mathcal{C}_{-} \sin [(k-n) t]
\end{aligned}
$$

with $\mathcal{C}_{ \pm}=\mathcal{M} \mathcal{W}(n \pm 2 k) / 2$.

The gravitationally driven EM wave

Monochromatic waves

$$
\begin{aligned}
& \ddot{E}_{(\ell)}+\ell^{2} E_{(\ell)}=\sigma_{(k)} \dot{\tilde{E}}(n)+2 \dot{\sigma}_{(k)} \tilde{E}^{(n)}, \\
& \ddot{B}_{(\ell)}+\ell^{2} B_{(\ell)}=\sigma_{(k)} \dot{\tilde{B}}^{(n)}+2 \dot{\sigma}_{(k)} \tilde{B}^{(n)},
\end{aligned}
$$

where

$$
\tilde{E}_{(n)}, \tilde{B}_{(n)}=\mathcal{M} \sin (n t+\vartheta), \quad \sigma_{(k)}=\mathcal{W} \sin (k t+\varphi),
$$

and

$$
\ell^{2}=k^{2}+n^{2}+2 k n \cos \phi .
$$

Forced oscillations

For $\vartheta, \varphi=0$,

$$
\begin{aligned}
& \ddot{E}_{(\ell)}+\ell^{2} E_{(\ell)}=\mathcal{C}_{+} \sin [(k+n) t]+\mathcal{C}_{-} \sin [(k-n) t], \\
& \ddot{B}_{(\ell)}+\ell^{2} B_{(\ell)}=\mathcal{C}_{+} \sin [(k+n) t]+\mathcal{C}_{-} \sin [(k-n) t],
\end{aligned}
$$

with $\mathcal{C}_{ \pm}=\mathcal{M} \mathcal{W}(n \pm 2 k) / 2$.

Resonant solutions

The $k=n$ and $\varphi=0=\vartheta$ case

$$
\ddot{E}_{(\ell)}+\ell^{2} E_{(\ell)}=\mathcal{F} \sin (m t),
$$

where $\mathcal{F}=3 k \mathcal{M} \mathcal{W} / 2$ and $m=2 k$. Then,

$$
E_{(\ell)}=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{3 k \mathcal{M} \mathcal{W}}{2\left(\ell^{2}-m^{2}\right)} \sin (m t)
$$

Resonance as $\ell \rightarrow m$.

where $\mathcal{F}_{1,2}=\mathcal{M} \mathcal{W}(n \pm 2 k) / 2, m_{1,2}=k \pm n$ and $\omega_{1,2}=\varphi \pm \vartheta$

Resonant solutions

The $k=n$ and $\varphi=0=\vartheta$ case

$$
\ddot{E}_{(\ell)}+\ell^{2} E_{(\ell)}=\mathcal{F} \sin (m t)
$$

where $\mathcal{F}=3 k \mathcal{M} \mathcal{W} / 2$ and $m=2 k$. Then,

$$
E_{(\ell)}=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{3 k \mathcal{M} \mathcal{W}}{2\left(\ell^{2}-m^{2}\right)} \sin (m t)
$$

Resonance as $\ell \rightarrow m$.

The $k \neq n$ and $\varphi \neq \vartheta \neq 0$ case

$$
\begin{aligned}
E_{(\ell)}= & \mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t) \\
& +\frac{\mathcal{F}_{1}}{\ell^{2}-m_{1}^{2}} \sin \left(m_{1} t+\omega_{1}\right)+\frac{\mathcal{F}_{2}}{\ell^{2}-m_{2}^{2}} \sin \left(m_{2} t+\omega_{2}\right)
\end{aligned}
$$

where $\mathcal{F}_{1,2}=\mathcal{M} \mathcal{W}(n \pm 2 k) / 2, m_{1,2}=k \pm n$ and $\omega_{1,2}=\varphi \pm \vartheta$.

Resonances as $\ell \rightarrow m_{1,2}$.

The Weyl-Maxwell coupling in cosmology

The gravitomagnetic system

To linear order

$$
\ddot{\sigma}_{(k)}+5 H \dot{\sigma}_{(k)}+\left[\frac{3}{2}(1-3 w) H^{2}+\left(\frac{k}{a}\right)^{2}\right] \sigma_{(k)}=0 \quad \text { and } \quad \tilde{B}_{(n)}, \tilde{E}_{(n)} \propto a^{-2}
$$

To second order,

$$
\ddot{B}_{(\ell)}+5 H \dot{B}_{(\ell)}+\left[3(1-w) H^{2}+\left(\frac{\ell}{a}\right)^{2}\right] B_{(\ell)}=2\left(\dot{\sigma}_{(k)}+2 H \sigma_{(k)}\right) \tilde{B}_{(n)}
$$

The gravitationally induced B-field

During the radiation era,

Resonance as $\ell \rightarrow k$ and $\operatorname{Ci}\left[(\ell-k) \sqrt{t} / a_{0} H_{0} \sqrt{t_{0}}\right] \rightarrow-\infty$

The Weyl-Maxwell coupling in cosmology

The gravitomagnetic system

To linear order

$$
\ddot{\sigma}_{(k)}+5 H \dot{\sigma}_{(k)}+\left[\frac{3}{2}(1-3 w) H^{2}+\left(\frac{k}{a}\right)^{2}\right] \sigma_{(k)}=0 \quad \text { and } \quad \tilde{B}_{(n)}, \tilde{E}_{(n)} \propto a^{-2}
$$

To second order,

$$
\ddot{B}_{(\ell)}+5 H \dot{B}_{(\ell)}+\left[3(1-w) H^{2}+\left(\frac{\ell}{a}\right)^{2}\right] B_{(\ell)}=2\left(\dot{\sigma}_{(k)}+2 H \sigma_{(k)}\right) \tilde{B}_{(n)}
$$

The gravitationally induced B-field

During the radiation era,

$$
B_{(\ell)}=\frac{1}{a^{2}}\left[C_{ \pm} S i\left(\frac{\ell \mp k}{a_{0} H_{0}} \sqrt{\frac{t}{t_{0}}}\right) \sin \left(\theta_{\mp}\right)+C_{ \pm} C i\left(\frac{\ell \mp k}{a_{0} H_{0}} \sqrt{\frac{t}{t_{0}}}\right) \cos \left(\theta_{\mp}\right)\right] .
$$

Resonance as $\ell \rightarrow k$ and $\operatorname{Ci}\left[(\ell-k) \sqrt{t} / a_{0} H_{0} \sqrt{t_{0}}\right] \rightarrow-\infty$.

Interpreting resonances

Forced oscillation

$$
\ddot{x}+\ell^{2} x=\mathcal{F} \sin (m t),
$$

where \mathcal{F} is the driving＂force＂．
Typical resonance
$x=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{\mathcal{F}}{\ell^{2}-m^{2}} \sin (m t)$
The amplitude diverges $(x \rightarrow \infty)$ as $m \rightarrow l$

Standard interpretation

When $x_{0}=0=\dot{x}_{n}$

Linear growth in time．

Interpreting resonances

Forced oscillation

$$
\ddot{x}+\ell^{2} x=\mathcal{F} \sin (m t),
$$

where \mathcal{F} is the driving "force".

Typical resonance

$$
x=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{\mathcal{F}}{\ell^{2}-m^{2}} \sin (m t)
$$

The amplitude diverges $(x \rightarrow \infty)$ as $m \rightarrow \ell$.

Standard interpretation

When $x_{0}=0=\dot{x}_{0}$

Linear growth in time.

Interpreting resonances

Forced oscillation

$$
\ddot{x}+\ell^{2} x=\mathcal{F} \sin (m t),
$$

where \mathcal{F} is the driving "force".

Typical resonance

$$
x=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{\mathcal{F}}{\ell^{2}-m^{2}} \sin (m t)
$$

The amplitude diverges $(x \rightarrow \infty)$ as $m \rightarrow \ell$.

Standard interpretation

When $x_{0}=0=\dot{x}_{0}$

$$
x=\frac{\mathcal{F}}{\ell} \lim _{m \rightarrow \ell}\left[\frac{\ell \sin (m t)-m \sin (\ell t)}{\ell^{2}-m^{2}}\right]=\frac{\mathcal{F}}{2 \ell}\left[\sin (\ell t)-\frac{t}{\ell} \cos (\ell t)\right] .
$$

Linear growth in time.

Minkowski case $(n=k, \vartheta=0=\varphi)$

Solution with a singularity

$$
E=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{3 k \tilde{E}_{0} \sigma_{0}}{2\left(\ell^{2}-m^{2}\right)} \sin (m k)
$$

Solution without singularity

Set $E_{0}=\tilde{E}_{0}$ and $\dot{E}_{0}=\tilde{E}_{0}$ ．Then，as $m \rightarrow \ell$

$$
E=\frac{1}{\ell}\left(\dot{\tilde{E}}+\frac{3 \tilde{E}_{0} \sigma_{0}}{8}\right) \sin (\ell t)+\tilde{E}_{0}\left(1+\frac{3 \sigma_{0}}{8} t\right) \cos (\ell t)
$$

Appreciable EM amplification（？）

－When close to the GW source
－With high－frequency GWs．

Minkowski case $(n=k, \vartheta=0=\varphi)$

Solution with a singularity

$$
E=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{3 k \tilde{E}_{0} \sigma_{0}}{2\left(\ell^{2}-m^{2}\right)} \sin (m k)
$$

Solution without singularity

Set $E_{0}=\tilde{E}_{0}$ and $\dot{E}_{0}=\dot{\tilde{E}}_{0}$. Then, as $m \rightarrow \ell$

$$
E=\frac{1}{\ell}\left(\dot{\tilde{E}}+\frac{3 \tilde{E}_{0} \sigma_{0}}{8}\right) \sin (\ell t)+\tilde{E}_{0}\left(1+\frac{3 \sigma_{0}}{8} t\right) \cos (\ell t)
$$

Appreciable EM amplification (?)
 - When close to the GW source

- With high-frequency GWs.

Minkowski case $(n=k, \vartheta=0=\varphi)$

Solution with a singularity

$$
E=\mathcal{C}_{1} \sin (\ell t)+\mathcal{C}_{2} \cos (\ell t)+\frac{3 k \tilde{E}_{0} \sigma_{0}}{2\left(\ell^{2}-m^{2}\right)} \sin (m k)
$$

Solution without singularity

Set $E_{0}=\tilde{E}_{0}$ and $\dot{E}_{0}=\dot{\tilde{E}}_{0}$. Then, as $m \rightarrow \ell$

$$
E=\frac{1}{\ell}\left(\dot{\tilde{E}}+\frac{3 \tilde{E}_{0} \sigma_{0}}{8}\right) \sin (\ell t)+\tilde{E}_{0}\left(1+\frac{3 \sigma_{0}}{8} t\right) \cos (\ell t)
$$

Appreciable EM amplification (?)

- When close to the GW source.
- With high-frequency GWs.

Underlying question

Possibility of energy transfer from GWs to EM fields

Widespread presence of EM fields－no GWs（so far）
Electromagnetism at the expense of gravitational radiation？

Underlying question

Possibility of energy transfer from GWs to EM fields

Widespread presence of EM fields - no GWs (so far)
Electromagnetism at the expense of gravitational radiation?

Underlying question

Possibility of energy transfer from GWs to EM fields
 Widespread presence of EM fields - no GWs (so far)

Underlying question

Possibility of energy transfer from GWs to EM fields
 Widespread presence of EM fields - no GWs (so far)

Electromagnetism at the expense of gravitational radiation?

