Gravito-electromagnetic resonances

Christos Tsagas

Department of Physics Aristotle University of Thessaloniki

NEB XV: Hania, June 20, 2012

Consider the interaction between the Weyl and the Maxwell fields

Consider the interaction between the Weyl and the Maxwell fields

Investigate the possibility of resonances?

1+3 covariant description

- Relative to an observer with 4-velocity u_a ($u_a u^a = -1$).
- By the Weyl part of the curvature: the electric (E_{ab}) and magnetic (H_{ab}) Weyl tensors.
- With $E_{ab} = E_{(ab)}$, $H_{ab} = H_{(ab)}$ and $D^b E_{ab} = 0 = D^b H_{ab}$.

The role of the shear

- In highly symmetric spacetimes (e.g. Minkowski, FRW) E_{ab} , $H_{ab} \rightarrow \sigma_{ab}$.
- There, gravitational waves are monitored by the shear, with $\sigma_{ab} = \sigma_{\langle ab \rangle}$ and $D^b \sigma_{ab} = 0$.

lsolating gravitational waves

- The conditions $D^b E_{ab} = 0 = D^b H_{ab} = D^b \sigma_{ab}$ must be satisfied at all times.
- On Minkowski and FRW backgrounds, we set $A_a = 0 = \omega_a = D_a \rho = D_a \Theta$ (to 1st order).

< 個 → < 匣 → … 匣

1+3 covariant description

- Relative to an observer with 4-velocity u_a ($u_a u^a = -1$).
- By the Weyl part of the curvature: the electric (E_{ab}) and magnetic (H_{ab}) Weyl tensors.
- With $E_{ab} = E_{\langle ab \rangle}$, $H_{ab} = H_{\langle ab \rangle}$ and $D^b E_{ab} = 0 = D^b H_{ab}$.

The role of the shear

- In highly symmetric spacetimes (e.g. Minkowski, FRW) E_{ab} , $H_{ab} \rightarrow \sigma_{ab}$.
- There, gravitational waves are monitored by the shear, with $\sigma_{ab} = \sigma_{(ab)}$ and $D^b \sigma_{ab} = 0$.

lsolating gravitational waves

- The conditions $D^b E_{ab} = 0 = D^b H_{ab} = D^b \sigma_{ab}$ must be satisfied at all times.
- On Minkowski and FRW backgrounds, we set $A_a = 0 = \omega_a = D_a \rho = D_a \Theta$ (to 1st order).

< 個 → < 匣 → … 匣

1+3 covariant description

- Relative to an observer with 4-velocity u_a ($u_a u^a = -1$).
- By the Weyl part of the curvature: the electric (*E_{ab}*) and magnetic (*H_{ab}*) Weyl tensors.
- With $E_{ab} = E_{\langle ab \rangle}$, $H_{ab} = H_{\langle ab \rangle}$ and $D^b E_{ab} = 0 = D^b H_{ab}$.

The role of the shear

- In highly symmetric spacetimes (e.g. Minkowski, FRW) E_{ab} , $H_{ab} \rightarrow \sigma_{ab}$.
- There, gravitational waves are monitored by the shear, with $\sigma_{ab} = \sigma_{\langle ab \rangle}$ and $D^b \sigma_{ab} = 0$.

Isolating gravitational waves

- The conditions $D^b E_{ab} = 0 = D^b H_{ab} = D^b \sigma_{ab}$ must be satisfied at all times.
- On Minkowski and FRW backgrounds, we set $A_a = 0 = \omega_a = D_a \rho = D_a \Theta$ (to 1st order).

< □ > < 三 > 三 三

1+3 covariant description

- Relative to an observer with 4-velocity u_a ($u_a u^a = -1$).
- By the Weyl part of the curvature: the electric (*E_{ab}*) and magnetic (*H_{ab}*) Weyl tensors.
- With $E_{ab} = E_{\langle ab \rangle}$, $H_{ab} = H_{\langle ab \rangle}$ and $D^b E_{ab} = 0 = D^b H_{ab}$.

The role of the shear

- In highly symmetric spacetimes (e.g. Minkowski, FRW) E_{ab} , $H_{ab} \rightarrow \sigma_{ab}$.
- There, gravitational waves are monitored by the shear, with $\sigma_{ab} = \sigma_{\langle ab \rangle}$ and $D^b \sigma_{ab} = 0$.

Isolating gravitational waves

• The conditions $D^b E_{ab} = 0 = D^b H_{ab} = D^b \sigma_{ab}$ must be satisfied at all times.

• On Minkowski and FRW backgrounds, we set $A_a = 0 = \omega_a = D_a \rho = D_a \Theta$ (to 1st order).

1+3 covariant description

- Relative to an observer with 4-velocity $u_a (u_a u^a = -1)$.
- By the electric (E_a) and magnetic (B_a) fields.

Faraday tensor

$$F_{ab} = 2E_{[a}u_{b]} + \varepsilon_{abc}B^c.$$

- Ampere's law: $\dot{E}_{\langle a \rangle} = -\frac{2}{3}\Theta E_a + (\sigma_{ab} + \omega_{ab})E^b + \varepsilon_{abc}A^bB^c + \text{curl}B_a$.
- Faraday's law: $\dot{B}_{\langle a \rangle} = -\frac{2}{3}\Theta B_a + (\sigma_{ab} + \omega_{ab})B^b \varepsilon_{abc}A^bE^c \operatorname{curl} E_a$.
- Coulomb's law: $D^a E_a = -2\omega^a B_a$ and Gauss' law: $D^a B_a = 2\omega^a E_a$.

1+3 covariant description

- Relative to an observer with 4-velocity $u_a (u_a u^a = -1)$.
- By the electric (*E_a*) and magnetic (*B_a*) fields.

Faraday tensor

$$F_{ab} = 2E_{[a}u_{b]} + \varepsilon_{abc}B^c.$$

- Ampere's law: $\dot{E}_{\langle a \rangle} = -\frac{2}{3}\Theta E_a + (\sigma_{ab} + \omega_{ab})E^b + \varepsilon_{abc}A^bB^c + \text{curl}B_a$.
- Faraday's law: $\dot{B}_{\langle a \rangle} = -\frac{2}{3}\Theta B_a + (\sigma_{ab} + \omega_{ab})B^b \varepsilon_{abc}A^bE^c \operatorname{curl} E_a$.
- Coulomb's law: $D^a E_a = -2\omega^a B_a$ and Gauss' law: $D^a B_a = 2\omega^a E_a$.

1+3 covariant description

- Relative to an observer with 4-velocity $u_a (u_a u^a = -1)$.
- By the electric (E_a) and magnetic (B_a) fields.

Faraday tensor

$$F_{ab} = 2E_{[a}u_{b]} + \varepsilon_{abc}B^c$$
.

- Ampere's law: $\dot{E}_{\langle a \rangle} = -\frac{2}{3}\Theta E_a + (\sigma_{ab} + \omega_{ab})E^b + \varepsilon_{abc}A^bB^c + \text{curl}B_a$.
- Faraday's law: $\dot{B}_{\langle a \rangle} = -\frac{2}{3}\Theta B_a + (\sigma_{ab} + \omega_{ab})B^b \varepsilon_{abc}A^bE^c \operatorname{curl} E_a$.
- Coulomb's law: $D^a E_a = -2\omega^a B_a$ and Gauss' law: $D^a B_a = 2\omega^a E_a$.

1+3 covariant description

- Relative to an observer with 4-velocity $u_a (u_a u^a = -1)$.
- By the electric (E_a) and magnetic (B_a) fields.

Faraday tensor

$$F_{ab} = 2E_{[a}u_{b]} + \varepsilon_{abc}B^c$$
.

- Ampere's law: $\dot{E}_{\langle a \rangle} = -\frac{2}{3}\Theta E_a + (\sigma_{ab} + \omega_{ab})E^b + \varepsilon_{abc}A^bB^c + \text{curl}B_a$.
- Faraday's law: $\dot{B}_{\langle a \rangle} = -\frac{2}{3}\Theta B_a + (\sigma_{ab} + \omega_{ab})B^b \varepsilon_{abc}A^bE^c \operatorname{curl} E_a$.
- Coulomb's law: $D^a E_a = -2\omega^a B_a$ and Gauss' law: $D^a B_a = 2\omega^a E_a$.

Gravitational waves on Minkowski space

Shear wave equation

At the linear level

$$\ddot{\sigma}_{ab} - D^2 \sigma_{ab} = \mathbf{0} \,.$$

Harmonic splitting

et
$$\sigma_{ab} = \sum_k \sigma_{(k)} Q_{ab}^{(k)} ,$$
vith
$$D_a \sigma_{(k)} = 0 = \dot{Q}_{ab}^{(n)} \qquad and \qquad D^2 Q_{ab}^{(k)} = -k^2 Q_{ab}^{(k)} .$$

Solution

Then,

$$\ddot{\sigma}_{(k)} + k^2 \sigma_{(k)} = 0$$

and

 $\sigma_{(k)} = \mathcal{W}\sin(kt + \varphi).$

Gravitational waves on Minkowski space

Shear wave equation

At the linear level

$$\ddot{\sigma}_{ab} - D^2 \sigma_{ab} = \mathbf{0} \,.$$

Harmonic splitting

Set		$\sum a^{(k)}$		
		$\sigma_{ab} = \sum_{k} \sigma_{(k)} \mathcal{Q}_{ab}^{(k)} ,$		
with	$D_a \sigma_{(k)} = 0 = \dot{\mathcal{Q}}_{ab}^{(n)}$	and	$\mathrm{D}^2 \mathcal{Q}^{(k)}_{ab} = -k^2 \mathcal{Q}^{(k)}_{ab}$.	

$$\ddot{\sigma}_{(k)} + k^2 \sigma_{(k)} = \mathbf{0}$$

Gravitational waves on Minkowski space

Shear wave equation

At the linear level

$$\ddot{\sigma}_{ab} - D^2 \sigma_{ab} = \mathbf{0} \,.$$

Harmonic splitting

$$\sigma_{ab} = \sum_{k} \sigma_{(k)} \mathcal{Q}_{ab}^{(k)} ,$$

$$D_a \sigma_{(k)} = \mathbf{0} = \dot{\mathcal{Q}}_{ab}^{(n)} \qquad \text{and} \qquad D^2 \mathcal{Q}_{ab}^{(k)} = -k^2 \mathcal{Q}_{ab}^{(k)}$$

with

Set

Solution

Then,

$$\ddot{\sigma}_{(k)} + k^2 \sigma_{(k)} = 0$$

and

 $\sigma_{(k)} = \mathcal{W}\sin(kt + \varphi).$

Electromagnetic waves on Minkowski space

EM wave equation

At the linear level

$$\ddot{E}_a - \mathrm{D}^2 E_a = 0 \quad \text{ and } \quad \ddot{B}_a - \mathrm{D}^2 B_a = 0 \,.$$

Harmonic splitting

Set

$$E_a = \sum_n E_{(n)} Q_a^{(1)(n)}$$
 and $B_a = \sum_n B_{(n)} Q_a^{(2)(n)}$,

with

$$D_a E_{(n)} = 0 = D_a B_{(n)} = \dot{Q}_a^{(i)(n)}$$
 and $D^2 Q_a^{(i)(n)} = -n^2 Q_a^{(i)(n)}$, $(i = 1, 2)$.

Solution

Then,

$$\ddot{E}_{(n)} + n^2 E_{(n)} = 0$$
 and $\ddot{B}_{(n)} + n^2 B_{(n)} = 0$,

with

$$E_{(n)} = B_{(n)} = \mathcal{M}\sin(nt + \vartheta).$$

Electromagnetic waves on Minkowski space

EM wave equation

At the linear level

$$\ddot{E}_a - \mathrm{D}^2 E_a = 0 \quad \text{and} \quad \ddot{B}_a - \mathrm{D}^2 B_a = 0 \,.$$

Harmonic splitting

Set

with $D_a E_{(n)}$

$$E_{a} = \sum_{n} E_{(n)} Q_{a}^{(1)(n)} \quad \text{and} \quad B_{a} = \sum_{n} B_{(n)} Q_{a}^{(2)(n)} ,$$
$$= 0 = D_{a} B_{(n)} = \dot{Q}_{a}^{(i)(n)} \quad \text{and} \quad D^{2} Q_{a}^{(i)(n)} = -n^{2} Q_{a}^{(i)(n)} \quad (i = 1, 2)$$

Solution

Then,

$$\ddot{E}_{(n)} + n^2 E_{(n)} = 0$$
 and $\ddot{B}_{(n)} + n^2 B_{(n)} = 0$,

with

 $E_{(n)} = B_{(n)} = \mathcal{M}\sin(nt + \vartheta).$

Electromagnetic waves on Minkowski space

EM wave equation

At the linear level

$$\ddot{E}_a - \mathrm{D}^2 E_a = 0 \quad \text{ and } \quad \ddot{B}_a - \mathrm{D}^2 B_a = 0 \,.$$

Harmonic splitting

Set

with

$$E_{a} = \sum_{n} E_{(n)} Q_{a}^{(1)(n)} \quad and \quad B_{a} = \sum_{n} B_{(n)} Q_{a}^{(2)(n)} ,$$

ith
$$D_{a}E_{(n)} = 0 = D_{a}B_{(n)} = \dot{Q}_{a}^{(i)(n)} \quad and \quad D^{2}Q_{a}^{(i)(n)} = -n^{2}Q_{a}^{(i)(n)} , \quad (i = 1, 2) .$$

Solution

Then,

$$\ddot{E}_{(n)} + n^2 E_{(n)} = 0$$
 and $\ddot{B}_{(n)} + n^2 B_{(n)} = 0$,

with

$$E_{(n)} = B_{(n)} = \mathcal{M}\sin(nt + \vartheta).$$

||| 白澤 ト ヘ油 ト 三曲

Gravitationally driven EM waves

To second order

$$\ddot{E}_{a} - D^{2}E_{a} = \sigma_{ab}\ddot{\tilde{E}}^{b} + \varepsilon_{abc}\tilde{B}_{d}D^{b}\sigma^{cd} - 2\varepsilon_{abc}\sigma^{b}{}_{d}D^{\langle c}\tilde{B}^{d\rangle} - \mathcal{R}_{ab}\tilde{E}^{b} - E_{ab}\tilde{E}^{b} + H_{ab}\tilde{B}^{b}$$

and

$$\ddot{B}_a - D^2 B_a = \sigma_{ab} \dot{\tilde{B}}^b - arepsilon_{abc} ilde{E}_d D^b \sigma^{cd} + 2arepsilon_{abc} \sigma^b_{\ d} D^{\langle c} ilde{E}^{d
angle} - \mathcal{R}_{ab} ilde{B}^b - E_{ab} ilde{B}^b - H_{ab} ilde{E}^b$$

where \tilde{E}_a , \tilde{B}_a and E_a , B_a are the original and the gravitationally driven EM fields.

Auxiliary relations

To first order

$$\mathcal{R}_{ab} = E_{ab} \,, \qquad E_{ab} = -\dot{\sigma}_{ab}$$

and

$$H_{ab} = \operatorname{curl}\sigma_{ab}$$
.

★御★★ ヨ★ 二百

Gravitationally driven EM waves

To second order

$$\ddot{E}_{a} - D^{2}E_{a} = \sigma_{ab}\ddot{\tilde{E}}^{b} + \varepsilon_{abc}\tilde{B}_{d}D^{b}\sigma^{cd} - 2\varepsilon_{abc}\sigma^{b}{}_{d}D^{\langle c}\tilde{B}^{d\rangle} - \mathcal{R}_{ab}\tilde{E}^{b} - E_{ab}\tilde{E}^{b} + \mathcal{H}_{ab}\tilde{B}^{b}$$

and

$$\ddot{B}_a - D^2 B_a = \sigma_{ab} \dot{\tilde{B}}^b - arepsilon_{abc} ilde{E}_d D^b \sigma^{cd} + 2arepsilon_{abc} \sigma^b{}_d D^{\langle c} ilde{E}^{d
angle} - \mathcal{R}_{ab} ilde{B}^b - E_{ab} ilde{B}^b - H_{ab} ilde{E}^b$$

where \tilde{E}_a , \tilde{B}_a and E_a , B_a are the original and the gravitationally driven EM fields.

Auxiliary relations

To first order

$$\mathcal{R}_{ab} = \mathcal{E}_{ab} \,, \qquad \mathcal{E}_{ab} = -\dot{\sigma}_{ab}$$

and

$$H_{ab} = \operatorname{curl}\sigma_{ab}$$
.

Gravitationally driven EM waves

To second order

$$\ddot{\mathcal{E}}_{a} - \mathrm{D}^{2}\mathcal{E}_{a} = \sigma_{ab}\dot{\tilde{\mathcal{E}}}^{b} + 2\dot{\sigma}_{ab}\tilde{\mathcal{E}}^{b} + \varepsilon_{abc}\tilde{B}_{d}\mathrm{D}^{b}\sigma^{cd} - 2\varepsilon_{abc}\sigma^{b}{}_{d}\mathrm{D}^{\langle c}\tilde{B}^{d\rangle} + \tilde{B}^{b}\mathrm{curl}\sigma_{ab}$$

and

$$\ddot{B}_{a} - \mathrm{D}^{2}B_{a} = \sigma_{ab}\dot{\tilde{B}}^{b} + 2\dot{\sigma}_{ab}\tilde{B}^{b} - \varepsilon_{abc}\tilde{E}_{d}\mathrm{D}^{b}\sigma^{cd} + 2\varepsilon_{abc}\sigma^{b}{}_{d}\mathrm{D}^{\langle c}\tilde{E}^{d\rangle} - \tilde{E}^{b}\mathrm{curl}\sigma_{ab} \,.$$

Simplify

Ignoring "backreaction" terms

$$\ddot{E}_a - D^2 E_a = \sigma_{ab} \dot{\tilde{E}}^b + 2 \dot{\sigma}_{ab} \tilde{E}^b$$

and

$$\ddot{B}_a - D^2 B_a = \sigma_{ab} \dot{\tilde{B}}^b + 2 \dot{\sigma}_{ab} \tilde{B}^b$$
 .

</l>
< □ > < □ > < □

Gravitationally driven EM waves

To second order

$$\ddot{\mathcal{E}}_{a} - \mathrm{D}^{2}\mathcal{E}_{a} = \sigma_{ab}\dot{\tilde{\mathcal{E}}}^{b} + 2\dot{\sigma}_{ab}\tilde{\mathcal{E}}^{b} + \varepsilon_{abc}\tilde{B}_{d}\mathrm{D}^{b}\sigma^{cd} - 2\varepsilon_{abc}\sigma^{b}{}_{d}\mathrm{D}^{\langle c}\tilde{B}^{d\rangle} + \tilde{B}^{b}\mathrm{curl}\sigma_{ab}$$

and

$$\ddot{B}_{a} - \mathrm{D}^{2}B_{a} = \sigma_{ab}\dot{\tilde{B}}^{b} + 2\dot{\sigma}_{ab}\tilde{B}^{b} - \varepsilon_{abc}\tilde{E}_{d}\mathrm{D}^{b}\sigma^{cd} + 2\varepsilon_{abc}\sigma^{b}{}_{d}\mathrm{D}^{\langle c}\tilde{E}^{d\rangle} - \tilde{E}^{b}\mathrm{curl}\sigma_{ab} \,.$$

Simplify

Ignoring "backreaction" terms

$$\ddot{E}_a - D^2 E_a = \sigma_{ab} \dot{\tilde{E}}^b + 2 \dot{\sigma}_{ab} \tilde{E}^b$$

and

$$\ddot{B}_a - D^2 B_a = \sigma_{ab} \dot{\tilde{B}}^b + 2 \dot{\sigma}_{ab} \tilde{B}^b \,.$$

The gravitationally driven EM wave

Monochromatic waves

$$\begin{split} \ddot{E}_{(\ell)} + \ell^2 E_{(\ell)} &= \sigma_{(k)} \dot{\tilde{E}}^{(n)} + 2 \dot{\sigma}_{(k)} \tilde{E}^{(n)} ,\\ \ddot{B}_{(\ell)} + \ell^2 B_{(\ell)} &= \sigma_{(k)} \dot{\tilde{B}}^{(n)} + 2 \dot{\sigma}_{(k)} \tilde{B}^{(n)} , \end{split}$$

where

$$\tilde{E}_{(n)}, \tilde{B}_{(n)} = \mathcal{M}\sin(nt + \vartheta), \qquad \sigma_{(k)} = \mathcal{W}\sin(kt + \varphi)$$

and

$$\ell^2 = k^2 + n^2 + 2kn\cos\phi\,.$$

Forced oscillations

For ϑ , $\varphi = 0$, $\ddot{E}_{(\ell)} + \ell^2 E_{(\ell)} = C_+ \sin[(k+n)t] + C_- \sin[(k-n)t]$ $\ddot{B}_{(\ell)} + \ell^2 B_{(\ell)} = C_+ \sin[(k+n)t] + C_- \sin[(k-n)t]$ with $C_+ = \mathcal{MW}(n \pm 2k)/2$.

The gravitationally driven EM wave

Monochromatic waves

$$\begin{split} \ddot{\mathcal{E}}_{(\ell)} + \ell^2 \mathcal{E}_{(\ell)} &= \sigma_{(k)} \dot{\tilde{\mathcal{E}}}^{(n)} + 2\dot{\sigma}_{(k)} \tilde{\mathcal{E}}^{(n)} ,\\ \ddot{\mathcal{B}}_{(\ell)} + \ell^2 \mathcal{B}_{(\ell)} &= \sigma_{(k)} \dot{\tilde{\mathcal{B}}}^{(n)} + 2\dot{\sigma}_{(k)} \tilde{\mathcal{B}}^{(n)} , \end{split}$$

where

$$\tilde{E}_{(n)}, \tilde{B}_{(n)} = \mathcal{M}\sin(nt + \vartheta), \qquad \sigma_{(k)} = \mathcal{W}\sin(kt + \varphi),$$

and

$$\ell^2 = k^2 + n^2 + 2kn\cos\phi.$$

Forced oscillations

For ϑ , $\varphi = 0$, $\ddot{E}_{(\ell)} + \ell^2 E_{(\ell)} = C_+ \sin[(k+n)t] + C_- \sin[(k-n)t]$, $\ddot{B}_{(\ell)} + \ell^2 B_{(\ell)} = C_+ \sin[(k+n)t] + C_- \sin[(k-n)t]$,

with $C_{\pm} = \mathcal{MW}(n \pm 2k)/2$.

Resonant solutions

The
$$k = n$$
 and $\varphi = 0 = \vartheta$ case

$$\ddot{E}_{(\ell)} + \ell^2 E_{(\ell)} = \mathcal{F} \sin(mt),$$

where $\mathcal{F} = 3k\mathcal{M}\mathcal{W}/2$ and m = 2k. Then,

$$E_{(\ell)} = C_1 \sin(\ell t) + C_2 \cos(\ell t) + \frac{3k\mathcal{M}\mathcal{W}}{2(\ell^2 - m^2)} \sin(mt) \, .$$

Resonance as $\ell \rightarrow m$.

The k eq n and $\varphi \neq \vartheta \neq 0$ case

$$E_{(\ell)} = C_1 \sin(\ell t) + C_2 \cos(\ell t) + \frac{\mathcal{F}_1}{\ell^2 - m_1^2} \sin(m_1 t + \omega_1) + \frac{\mathcal{F}_2}{\ell^2 - m_2^2} \sin(m_2 t + \omega_2),$$

where $\mathcal{F}_{1,2} = \mathcal{MW}(n \pm 2k)/2$, $m_{1,2} = k \pm n$ and $\omega_{1,2} = \varphi \pm \vartheta$.

Resonances as $\ell \to m_{1,2}$.

Resonant solutions

The
$$k = n$$
 and $\varphi = 0 = \vartheta$ case

$$\ddot{E}_{(\ell)} + \ell^2 E_{(\ell)} = \mathcal{F} \sin(mt),$$

where $\mathcal{F} = 3k\mathcal{M}\mathcal{W}/2$ and m = 2k. Then,

$$E_{(\ell)} = C_1 \sin(\ell t) + C_2 \cos(\ell t) + \frac{3k\mathcal{M}\mathcal{W}}{2(\ell^2 - m^2)} \sin(mt) \,.$$

Resonance as $\ell \rightarrow m$.

The $k \neq n$ and $\varphi \neq \vartheta \neq 0$ case

$$\begin{aligned} E_{(\ell)} &= & \mathcal{C}_1 \sin(\ell t) + \mathcal{C}_2 \cos(\ell t) \\ &+ \frac{\mathcal{F}_1}{\ell^2 - m_1^2} \sin(m_1 t + \omega_1) + \frac{\mathcal{F}_2}{\ell^2 - m_2^2} \sin(m_2 t + \omega_2) \,, \end{aligned}$$

where $\mathcal{F}_{1,2} = \mathcal{M}\mathcal{W}(n \pm 2k)/2$, $m_{1,2} = k \pm n$ and $\omega_{1,2} = \varphi \pm \vartheta$.

Resonances as $\ell \rightarrow m_{1,2}$.

The Weyl-Maxwell coupling in cosmology

The gravitomagnetic system

To linear order

$$\ddot{\sigma}_{(k)} + 5H\dot{\sigma}_{(k)} + \left[rac{3}{2}(1-3w)H^2 + \left(rac{k}{a}
ight)^2
ight]\sigma_{(k)} = 0 \quad and \quad \tilde{B}_{(n)}, \ \tilde{E}_{(n)} \propto a^{-2} \, .$$

To second order,

$$\ddot{B}_{(\ell)} + 5H\dot{B}_{(\ell)} + \left[3(1-w)H^2 + \left(\frac{\ell}{a}\right)^2\right]B_{(\ell)} = 2(\dot{\sigma}_{(k)} + 2H\sigma_{(k)})\tilde{B}_{(n)}.$$

The gravitationally induced B-field

During the radiation era,

$$B_{(\ell)} = \frac{1}{a^2} \left[C_{\pm} Si \left(\frac{\ell \mp k}{a_0 H_0} \sqrt{\frac{t}{t_0}} \right) \sin(\theta_{\mp}) + C_{\pm} Ci \left(\frac{\ell \mp k}{a_0 H_0} \sqrt{\frac{t}{t_0}} \right) \cos(\theta_{\mp}) \right]$$

Resonance as $\ell \to k$ and $Ci[(\ell - k)\sqrt{t}/a_0H_0\sqrt{t_0}] \to -\infty$.

The Weyl-Maxwell coupling in cosmology

The gravitomagnetic system

To linear order

$$\ddot{\sigma}_{(k)} + 5H\dot{\sigma}_{(k)} + \left[rac{3}{2}(1-3w)H^2 + \left(rac{k}{a}
ight)^2
ight]\sigma_{(k)} = 0 \quad and \quad \tilde{B}_{(n)}, \ \tilde{E}_{(n)} \propto a^{-2} \, .$$

To second order,

$$\ddot{B}_{(\ell)} + 5H\dot{B}_{(\ell)} + \left[3(1-w)H^2 + \left(\frac{\ell}{a}\right)^2\right]B_{(\ell)} = 2(\dot{\sigma}_{(k)} + 2H\sigma_{(k)})\tilde{B}_{(n)}.$$

The gravitationally induced B-field

During the radiation era,

$$B_{(\ell)} = \frac{1}{a^2} \left[C_{\pm} Si \left(\frac{\ell \mp k}{a_0 H_0} \sqrt{\frac{t}{t_0}} \right) \sin(\theta_{\mp}) + C_{\pm} Ci \left(\frac{\ell \mp k}{a_0 H_0} \sqrt{\frac{t}{t_0}} \right) \cos(\theta_{\mp}) \right]$$

Resonance as $\ell \to k$ and $Ci[(\ell - k)\sqrt{t}/a_0H_0\sqrt{t_0}] \to -\infty$.

Interpreting resonances

Forced oscillation

$$\ddot{x} + \ell^2 x = \mathcal{F}\sin(mt)\,,$$

where ${\cal F}$ is the driving "force".

Typical resonance

$$x = \mathcal{C}_1 \sin(\ell t) + \mathcal{C}_2 \cos(\ell t) + \frac{\mathcal{F}}{\ell^2 - m^2} \sin(mt).$$

The amplitude diverges $(x \to \infty)$ as $m \to \ell$.

Standard interpretation

When $x_0 = 0 = \dot{x}_0$

$$x = \frac{\mathcal{F}}{\ell} \lim_{m \to \ell} \left[\frac{\ell \sin(mt) - m \sin(\ell t)}{\ell^2 - m^2} \right] = \frac{\mathcal{F}}{2\ell} \left[\sin(\ell t) - \frac{t}{\ell} \cos(\ell t) \right]$$

Linear growth in time.

Interpreting resonances

Forced oscillation

$$\ddot{x} + \ell^2 x = \mathcal{F}\sin(mt)\,,$$

where \mathcal{F} is the driving "force".

Typical resonance

$$x = \mathcal{C}_1 \sin(\ell t) + \mathcal{C}_2 \cos(\ell t) + \frac{\mathcal{F}}{\ell^2 - m^2} \sin(m t).$$

The amplitude diverges $(x \to \infty)$ as $m \to \ell$.

Standard interpretation

When $x_0 = 0 = \dot{x}_0$

$$x = \frac{\mathcal{F}}{\ell} \lim_{m \to \ell} \left[\frac{\ell \sin(mt) - m \sin(\ell t)}{\ell^2 - m^2} \right] = \frac{\mathcal{F}}{2\ell} \left[\sin(\ell t) - \frac{t}{\ell} \cos(\ell t) \right]$$

Linear growth in time.

Interpreting resonances

Forced oscillation

$$\ddot{x} + \ell^2 x = \mathcal{F}\sin(mt)\,,$$

where ${\cal F}$ is the driving "force".

Typical resonance

$$x = \mathcal{C}_1 \sin(\ell t) + \mathcal{C}_2 \cos(\ell t) + \frac{\mathcal{F}}{\ell^2 - m^2} \sin(m t).$$

The amplitude diverges $(x \to \infty)$ as $m \to \ell$.

Standard interpretation

When $x_0 = 0 = \dot{x}_0$

$$x = \frac{\mathcal{F}}{\ell} \lim_{m \to \ell} \left[\frac{\ell \sin(mt) - m \sin(\ell t)}{\ell^2 - m^2} \right] = \frac{\mathcal{F}}{2\ell} \left[\sin(\ell t) - \frac{t}{\ell} \cos(\ell t) \right]$$

Linear growth in time.

Minkowski case ($n = k, \vartheta = 0 = \varphi$)

Solution with a singularity

$$E = C_1 \sin(\ell t) + C_2 \cos(\ell t) + \frac{3k\tilde{E}_0\sigma_0}{2(\ell^2 - m^2)}\sin(mk)$$

Solution without singularity

Set $E_0 = \tilde{E}_0$ and $\dot{E}_0 = \dot{\tilde{E}}_0$. Then, as $m \to \ell$

$$E = \frac{1}{\ell} \left(\dot{\tilde{E}} + \frac{3\tilde{E}_0 \sigma_0}{8} \right) \sin(\ell t) + \tilde{E}_0 \left(1 + \frac{3\sigma_0}{8} t \right) \cos(\ell t) \,.$$

Appreciable EM amplification (?)

- When close to the GW source.
- With high-frequency GWs.

Minkowski case ($n = k, \vartheta = 0 = \varphi$)

Solution with a singularity

$$E = C_1 \sin(\ell t) + C_2 \cos(\ell t) + \frac{3k\tilde{E}_0\sigma_0}{2(\ell^2 - m^2)}\sin(mk)$$

Solution without singularity

Set $E_0 = \tilde{E}_0$ and $\dot{E}_0 = \dot{\tilde{E}}_0$. Then, as $m \to \ell$

$$E = \frac{1}{\ell} \left(\dot{\tilde{E}} + \frac{3\tilde{E}_0 \sigma_0}{8} \right) \sin(\ell t) + \tilde{E}_0 \left(1 + \frac{3\sigma_0}{8} t \right) \cos(\ell t) \,.$$

Appreciable EM amplification (?)

- When close to the GW source.
- With high-frequency GWs.

Minkowski case ($n = k, \vartheta = 0 = \varphi$)

Solution with a singularity

$$E = C_1 \sin(\ell t) + C_2 \cos(\ell t) + \frac{3k\tilde{E}_0\sigma_0}{2(\ell^2 - m^2)}\sin(mk)$$

Solution without singularity

Set $E_0 = \tilde{E}_0$ and $\dot{E}_0 = \dot{\tilde{E}}_0$. Then, as $m \to \ell$

$$E = \frac{1}{\ell} \left(\dot{\tilde{E}} + \frac{3\tilde{E}_0 \sigma_0}{8} \right) \sin(\ell t) + \tilde{E}_0 \left(1 + \frac{3\sigma_0}{8} t \right) \cos(\ell t) \,.$$

Appreciable EM amplification (?)

- When close to the GW source.
- With high-frequency GWs.

Possibility of energy transfer from GWs to EM fields Widespread presence of EM fields - no GWs (so far) Electromagnetism at the expense of gravitational radiation

Possibility of energy transfer from GWs to EM fields

Widespread presence of EM fields - no GWs (so far)

Electromagnetism at the expense of gravitational radiation?

Possibility of energy transfer from GWs to EM fields Widespread presence of EM fields - no GWs (so far)

Electromagnetism at the expense of gravitational radiation?

Possibility of energy transfer from GWs to EM fields Widespread presence of EM fields - no GWs (so far) Electromagnetism at the expense of gravitational radiation?