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Gravitational waves

1+3 covariant description

Relative to an observer with 4-velocity ua (uaua = −1).

By the Weyl part of the curvature: the electric (Eab) and magnetic (Hab) Weyl tensors.

With Eab = E〈ab〉, Hab = H〈ab〉 and DbEab = 0 = DbHab .

The role of the shear

In highly symmetric spacetimes (e.g. Minkowski, FRW) Eab ,Hab → σab .

There, gravitational waves are monitored by the shear, with σab = σ〈ab〉 and Dbσab = 0.

Isolating gravitational waves

The conditions DbEab = 0 = DbHab = Dbσab must be satisfied at all times.

On Minkowski and FRW backgrounds, we set Aa = 0 = ωa = Daρ = DaΘ (to 1st order).
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Source-free electromagnetic fields

1+3 covariant description

Relative to an observer with 4-velocity ua (uaua = −1).

By the electric (Ea) and magnetic (Ba) fields.

Faraday tensor

Fab = 2E[aub] + εabcBc .

Maxwell’s equations

Ampere’s law: Ė〈a〉 = − 2
3 ΘEa + (σab + ωab)Eb + εabcAbBc + curlBa .

Faraday’s law: Ḃ〈a〉 = − 2
3 ΘBa + (σab + ωab)Bb − εabcAbEc − curlEa .

Coulomb’s law: DaEa = −2ωaBa and Gauss’ law: DaBa = 2ωaEa .
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3 ΘBa + (σab + ωab)Bb − εabcAbEc − curlEa .

Coulomb’s law: DaEa = −2ωaBa and Gauss’ law: DaBa = 2ωaEa .



GW&EM 4/13

Source-free electromagnetic fields

1+3 covariant description

Relative to an observer with 4-velocity ua (uaua = −1).

By the electric (Ea) and magnetic (Ba) fields.

Faraday tensor

Fab = 2E[aub] + εabcBc .

Maxwell’s equations

Ampere’s law: Ė〈a〉 = − 2
3 ΘEa + (σab + ωab)Eb + εabcAbBc + curlBa .

Faraday’s law: Ḃ〈a〉 = − 2
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Gravitational waves on Minkowski space

Shear wave equation

At the linear level
σ̈ab −D2σab = 0 .

Harmonic splitting

Set
σab =

∑
k

σ(k)Q(k)
ab ,

with
Daσ(k) = 0 = Q̇(n)

ab and D2Q(k)
ab = −k2Q(k)

ab .

Solution

Then,
σ̈(k) + k2σ(k) = 0

and
σ(k) =W sin(kt + ϕ) .
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Electromagnetic waves on Minkowski space

EM wave equation

At the linear level

Ëa −D2Ea = 0 and B̈a −D2Ba = 0 .

Harmonic splitting

Set
Ea =

∑
n

E(n)Q(1)(n)
a and Ba =

∑
n

B(n)Q(2)(n)
a ,

with

DaE(n) = 0 = DaB(n) = Q̇(i)(n)
a and D2Q(i)(n)

a = −n2Q(i)(n)
a , (i = 1, 2) .

Solution

Then,
Ë(n) + n2E(n) = 0 and B̈(n) + n2B(n) = 0 ,

with
E(n) = B(n) =M sin(nt + ϑ) .
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Ëa −D2Ea = 0 and B̈a −D2Ba = 0 .

Harmonic splitting

Set
Ea =

∑
n

E(n)Q(1)(n)
a and Ba =

∑
n

B(n)Q(2)(n)
a ,

with

DaE(n) = 0 = DaB(n) = Q̇(i)(n)
a and D2Q(i)(n)

a = −n2Q(i)(n)
a , (i = 1, 2) .

Solution

Then,
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Gravito-electromagnetic interaction

Gravitationally driven EM waves

To second order

Ëa −D2Ea = σab
˙̃Eb + εabcB̃d Dbσcd − 2εabcσ

b
d D〈cB̃d〉 −RabẼb − EabẼb + HabB̃b

and

B̈a −D2Ba = σab
˙̃Bb − εabcẼd Dbσcd + 2εabcσ

b
d D〈cẼd〉 −RabB̃b − EabB̃b − HabẼb ,

where Ẽa, B̃a and Ea, Ba are the original and the gravitationally driven EM fields.

Auxiliary relations

To first order
Rab = Eab , Eab = −σ̇ab

and
Hab = curlσab .
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Gravito-electromagnetic interaction

Gravitationally driven EM waves

To second order

Ëa −D2Ea = σab
˙̃Eb + 2σ̇abẼb + εabcB̃d Dbσcd − 2εabcσ

b
d D〈cB̃d〉 + B̃bcurlσab

and

B̈a −D2Ba = σab
˙̃Bb + 2σ̇abB̃b − εabcẼd Dbσcd + 2εabcσ

b
d D〈cẼd〉 − Ẽbcurlσab .

Simplify

Ignoring “backreaction” terms

Ëa −D2Ea = σab
˙̃Eb + 2σ̇abẼb

and
B̈a −D2Ba = σab

˙̃Bb + 2σ̇abB̃b .
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The gravitationally driven EM wave

Monochromatic waves

Ë(`) + `2E(`) = σ(k)
˙̃E (n) + 2σ̇(k)Ẽ

(n) ,

B̈(`) + `2B(`) = σ(k)
˙̃B(n) + 2σ̇(k)B̃

(n) ,

where
Ẽ(n), B̃(n) =M sin(nt + ϑ) , σ(k) =W sin(kt + ϕ) ,

and
`2 = k2 + n2 + 2kn cosφ .

Forced oscillations

For ϑ, ϕ = 0,
Ë(`) + `2E(`) = C+ sin[(k + n)t] + C− sin[(k − n)t] ,

B̈(`) + `2B(`) = C+ sin[(k + n)t] + C− sin[(k − n)t] ,

with C± =MW(n ± 2k)/2.



GW&EM 9/13

The gravitationally driven EM wave

Monochromatic waves
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Resonant solutions

The k = n and ϕ = 0 = ϑ case

Ë(`) + `2E(`) = F sin(mt) ,

where F = 3kMW/2 and m = 2k . Then,

E(`) = C1 sin(`t) + C2 cos(`t) +
3kMW

2(`2 −m2)
sin(mt) .

Resonance as `→ m.

The k 6= n and ϕ 6= ϑ 6= 0 case

E(`) = C1 sin(`t) + C2 cos(`t)

+
F1

`2 −m2
1

sin(m1t + ω1) +
F2

`2 −m2
2

sin(m2t + ω2) ,

where F1,2 =MW(n ± 2k)/2, m1,2 = k ± n and ω1,2 = ϕ± ϑ.

Resonances as `→ m1,2.
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The Weyl-Maxwell coupling in cosmology

The gravitomagnetic system

To linear order

σ̈(k) + 5Hσ̇(k) +

[
3
2

(1− 3w)H2 +

(
k
a

)2
]
σ(k) = 0 and B̃(n), Ẽ(n) ∝ a−2 .

To second order,

B̈(`) + 5HḂ(`) +

[
3(1− w)H2 +

(
`

a

)2
]

B(`) = 2(σ̇(k) + 2Hσ(k))B̃(n) .

The gravitationally induced B-field

During the radiation era,

B(`) =
1
a2

[
C±Si

(
`∓ k
a0H0

√
t
t0

)
sin(θ∓) + C±Ci

(
`∓ k
a0H0

√
t
t0

)
cos(θ∓)

]
.

Resonance as `→ k and Ci[(`− k)
√

t/a0H0
√

t0]→ −∞.
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To second order,

B̈(`) + 5HḂ(`) +
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Interpreting resonances

Forced oscillation

ẍ + `2x = F sin(mt) ,

where F is the driving “force”.

Typical resonance

x = C1 sin(`t) + C2 cos(`t) +
F

`2 −m2
sin(mt) .

The amplitude diverges (x →∞) as m→ `.

Standard interpretation

When x0 = 0 = ẋ0

x =
F
`

lim
m→`

[
` sin(mt)−m sin(`t)

`2 −m2

]
=
F
2`

[
sin(`t)−

t
`

cos(`t)
]
.

Linear growth in time.
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Minkowski case (n = k , ϑ = 0 = ϕ)

Solution with a singularity

E = C1 sin(`t) + C2 cos(`t) +
3kẼ0σ0

2(`2 −m2)
sin(mk)

Solution without singularity

Set E0 = Ẽ0 and Ė0 = ˙̃E0. Then, as m→ `

E =
1
`

(
˙̃E +

3Ẽ0σ0

8

)
sin(`t) + Ẽ0

(
1 +

3σ0

8
t
)

cos(`t) .

Appreciable EM amplification (?)

When close to the GW source.

With high-frequency GWs.
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Underlying question

Possibility of energy transfer from GWs to EM fields

Widespread presence of EM fields - no GWs (so far)

Electromagnetism at the expense of gravitational radiation?
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