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We consider system of ODEs of the form

ẍ i + Γijk ẋ
j ẋk = F i (1)

where Γijk are general functions, a dot over a symbol indicates
derivation with respect to the parameter �s�along the solution
curves. F i is vector C∞ �eld.

This type of equations contains the equations of motion of a
dynamical system in a Riemannian space if Γijk are the connection
coe¢ cients of the metric .In this case �s� is an a¢ ne parameter along
the trajectory
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Lie Symmetries

The study of the Lie point symmetries of a given system of ODEs
consists of two steps

a. The determination of the conditions, which the components of the
Lie symmetry vector must satisfy

b. The solution of the system of these conditions.

Step (a) is formal and Step (b) is the hart of the problem.
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Lie Symmetries
Possible solutions for step (b)

a. Straightforward by computer. Limited to simple cases and few
degrees of freedom

b. Transfer the problem to Di¤erential Geometry and use well known
theorems to solve the system of conditions geometrically in a general
n�dimensional Riemannian space.

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 5 / 28



Lie Symmetries
Possible solutions for step (b)

a. Straightforward by computer. Limited to simple cases and few
degrees of freedom

b. Transfer the problem to Di¤erential Geometry and use well known
theorems to solve the system of conditions geometrically in a general
n�dimensional Riemannian space.

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 5 / 28



Key Idea

Express the system of Lie symmetry conditions of (1) in terms of
symmetry conditions of the metric.

Then the generators of Lie point symmetries of (1) will be related to
the generators of collineations of the metric

In this way the determination of the Lie point symmetries of (1) is
transferred to the geometric problem of determining the generators of
a speci�c type of symmetries of the metric. In a way, the Lie point
symmetry problem of (1) has been "geometrized".

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 6 / 28



Key Idea

Express the system of Lie symmetry conditions of (1) in terms of
symmetry conditions of the metric.

Then the generators of Lie point symmetries of (1) will be related to
the generators of collineations of the metric

In this way the determination of the Lie point symmetries of (1) is
transferred to the geometric problem of determining the generators of
a speci�c type of symmetries of the metric. In a way, the Lie point
symmetry problem of (1) has been "geometrized".

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 6 / 28



Key Idea

Express the system of Lie symmetry conditions of (1) in terms of
symmetry conditions of the metric.

Then the generators of Lie point symmetries of (1) will be related to
the generators of collineations of the metric

In this way the determination of the Lie point symmetries of (1) is
transferred to the geometric problem of determining the generators of
a speci�c type of symmetries of the metric. In a way, the Lie point
symmetry problem of (1) has been "geometrized".

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 6 / 28



The lhs of (1) contains the geometry. It turns out from the Lie
symmetry conditions imply the following result

Theorem 1
The Lie point symmetries of (1) are amongst the generators of the
special projective group of the space.This result is common to all
dynamical systems moving in the speci�c space.

The rhs of (1) speci�es the dynamical system (the force).

Therefore for each speci�c dynamical system �moving�in a
Riemannian space the equations of motion admit Lie symmetries if
certain conditions hold between the force F i and the generators of the
special projective algebra of the space.
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Result

These conditions act in two directions

a. Either "select" the Lie symmetry generators from the special
projective algebra of the space for a given dynamical system or

b. Select the forces F i which admit Lie symmetry generators from the
special projective algebra of the space.

Both types of answers are of interest and in the following we present
some applications.
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Noether symmetries

If the system of equations (1) admits a Lagrangian L then the Lie
symmetries which satisfy the additional condition

X [1]L+ Lξ̇ = ḟ where f = f
�
t, x i , ẋ i

�
(2)

are called Noether symmetries. For each Noether point symmetry the
quantity

I = ξ

�
ẋ i

∂L
∂ẋ i

� L
�
� ẋiηi + f (3)

is a �rst integral of (1). Obviously NS � LS

It turns out that condition (2) implies the following result

Theorem 2
The Noether point symmetries are elements of the homothetic
algebra of the space (which is a subalgebra of the special projective
algebra). Furthermore the �rst integrals of a Noether point
symmetry are linear in the velocities.
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∂ẋ i

� L
�
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The projective algebra of a Riemannian space

Collineation A B
Killing vector (KV) gij 0
Homothetic vector (HV) gij ψgij , ψ,i = 0
Conformal Killing vector (CKV) gij ψgij ,ψ,i 6= 0
A¢ ne Collineation (AC) Γijk 0
Projective collineation (PC) Γijk 2φ(,jδ

i
k ), φ,i 6= 0

Special Projective collineation (SPC) Γijk 2φ(,jδ
i
k ), φ,i 6= 0 andφ,jk = 0
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The projective algebra of the Euclidian space

.

Collineation Gradient Non-gradient
Killing vectors (KV) SI = δiI ∂i XIJ = δj

[I δ
i
j ]xj∂i

Homothetic vector (HV) H = x i∂i
A¢ ne Collineation (AC) AIJ = xJ δiI ∂i
Special Projective collineation (SPC) PI = SIH.

The Lie point symmetries of all Newtonian dynamical systems are
amongst the vectors in the above table. Also the Noether point
symmetries of all Newtonian dynamical systems (or systems moving in
a �at space in general -apart form some di¤erences in sign) follow
from the elements of the �rst two rows of the above table.
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Applications in Newtonian Physics

The Lie symmetries of all 3d Newtonian dynamical systems

First application (Tsamparlis M. Paliathanasis A J. Phys. A 2012
arXiv:1111.0810)

Determine all 3d Newtonian dynamical systems which admit Lie
symmetries.
Answer
These dynamical systems are the ones given in the following tables
Lie symmetry F

�
xµ, xν, xσ

�
d
2 t∂t + ∂µ e�dxµ fµ,ν,σ (xν, xσ)
d
2 t∂t + ∂θ(µν)

e�d θ(µν) fµ,ν,σ
�
r(µν), xσ

�
d
2 t∂t + R∂R x1�dµ fµ,ν,σ

�
xν
xµ
, xσ
xµ

�
d
2 t∂t + xµ∂µ x1�dµ fµ,ν,σ (xν, xσ)
d
2 t∂t + xν∂µ e�d

xµ
xν

h
xµ

xν
fν (xν, xσ) + fµ (xν, xσ)

i
∂µ + fν∂ν + fσ∂σ
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Applications in Newtonian Physics

The Lie symmetries of all 3d Newtonian dynamical systems

Lie symmetry Fµ

�
xµ, xν, xσ

�
t∂µ fµ,ν,σ (xν, xσ)

t2∂t+tR∂R
1
x 3µ
fµ,ν,σ

�
xν
xµ
, xσ
xµ

�
e�t

p
m∂µ �mxµ+f µ,ν,σ (xν, xσ)

1p
m e

�t
p
m∂t+e�t

p
mR∂R �m

4 xµ+
1
x 3µ
fµ,ν,σ

�
xν
xµ
, xσ
xµ

�
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Applications in Newtonian Physics

The Noether symmetries of all 3d Newtonian dynamical systems

Determine all 3d Newtonian dynamical systems which admit Noether
point symmetries and subsequently the ones which are integrable via
Noether integrals.

Answer
Lie d = 0 d 6= 2
d
2 t∂t+∂µ c1xµ+f (xν, xσ) e�dxµ f (xν, xσ)
d
2 t∂t+∂θ(µν)

c1θ(µν)+f
�
r(µν), xσ

�
e�d θ(µν) f

�
r(µν), xσ

�
d
2 t∂t+R∂R x2f

�
xν
xµ
, xσ
xµ

�
x2�d f

�
xν
xµ
, xσ
xµ

�
d
2 t∂t+xµ∂µ c1x2µ+f (xν, xσ) @
d
2 t∂t+xν∂µ c1xµ+c2

�
x2µ + x

2
ν

�
+f (xσ) @

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 14 / 28



Applications in Newtonian Physics

The Noether symmetries of all 3d Newtonian dynamical systems

Determine all 3d Newtonian dynamical systems which admit Noether
point symmetries and subsequently the ones which are integrable via
Noether integrals.

Answer
Lie d = 0 d 6= 2
d
2 t∂t+∂µ c1xµ+f (xν, xσ) e�dxµ f (xν, xσ)
d
2 t∂t+∂θ(µν)

c1θ(µν)+f
�
r(µν), xσ

�
e�d θ(µν) f

�
r(µν), xσ

�
d
2 t∂t+R∂R x2f

�
xν
xµ
, xσ
xµ

�
x2�d f

�
xν
xµ
, xσ
xµ

�
d
2 t∂t+xµ∂µ c1x2µ+f (xν, xσ) @
d
2 t∂t+xν∂µ c1xµ+c2

�
x2µ + x

2
ν

�
+f (xσ) @

M. Tsamparlis (Univ. of Athens) NEB 15 June 2011 June 16, 2012 14 / 28



Applications in Newtonian Physics

The Noether symmetries of all 3d Newtonian dynamical systems

Lie V (x , y , z)
t∂µ c1xµ+f (xν, xσ)

t2∂t+tR∂R
1
x 2µ
f
�
xν
xµ
, xσ
xµ

�
e�t

p
m∂µ �m

2 x
2
µ+c1xµ+f (xν, xσ)

1p
m e

�t
p
m∂t+e�t

p
mR∂R �m

8 R
2+ 1

x 2µ
f
�
xν
xµ
, xσ
xµ

�
In order a 3d Newtonian dynamical system to be integrable via Noether
point symmetries it must admit at least 3 Noether �rst integrals.

The same problem for the 2d case has been answered in Tsamparlis
M. and Paliathanasis A 2011 J. Phys. A: Math. and Theor. 44
175202. The 2d case is important because it applies to the mini super
space of the dynamical systems in Cosmology.
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Motion on the two dimensional sphere

Consider the Lagrangian

L
�
φ, θ, φ̇, θ̇

�
=
1
2

�
φ̇
2
+ Sinn2φ θ̇

2
�
� V (θ, φ) (4)

where

Sinnφ =

�
sinφ K = 1
sinhφ K = �1 Cosnφ =

�
cos φ K = 1
coshφ K = �1.

and K is the curvature of the kinetic metric of the Lagrangian (4).
The potentials V (θ, φ) where the Dynamical is integrable via Noether
point symmetries are the ones of the following table
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Motion on the two dimensional sphere

Integral dynamical systems moving on the 2d Euclidian sphere
V (θ, φ) Noether Integral
F (cos θSinnφ) ICK 1e ,h
F (sin θSinnφ) ICK 2e ,h
F (φ) ICK 3e ,h
F
�

1+tan2 θ
Sinn2φ (a�b tan θ)2

�
aICK 1e ,h+bICK 2e ,h

F (a cos θSinnφ�K bCosnφ) aICK 1e ,h+bICK 3e ,h
F (a sin θSinnφ�K bCosnφ) aICK 2e ,h+bICK 3e ,h

F
�
(a cos θ � b sin θ) Sinnφ+

�K cCosnφ

�
aICK 1e ,h + bICK 2e ,h + cICK 3e ,h

where

ICK 3 = θ̇Sinn2φ. , ICK 1 = φ̇ sin θ + θ̇ cos θSinnφCosnφ

ICK 2 = φ̇ cos θ � θ̇ sin θSinnφCosnφ
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Motion on the two dimensional sphere

Corollary
A dynamical system with Lagrangian (4) has one, two or four Noether
point symmetries hence Noether integrals.

Proof.
For the case of the free particle we have the maximum number of four
Noether symmetries (the rotation group so(3) plus the ∂t). In the case
the potential is not constant the Noether symmetries are produced by the
non-gradient KVs with Lie algebra [XA,XB ] = CCABXC where
C 312 = C

2
31 = C 123 = 1 for ε = 1 and C̄ 321 = C̄

1
23 = C̄

2
31 = 1 for

ε = �1. Because the Noether point symmetries form a Lie algebra and the
Lie algebra of the KVs is semisimple the system will admit either none, one
or three Noether symmetries generated from the KVs. The case of three is
when V (θ, φ) = V0 that is the case of geodesics, therefore the Noether
point symmetries will be (including ∂t) either one, two or four.
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Lie and Noether symmetries of Bianchi class A
homogeneous cosmologies with a scalar �eld.

The Bianchi models in the ADM formalism are described by the
metric

ds2 = �N2(t)dt2 + gµνωµ 
ων (5)

where N(t) is the lapse function and fωag is the canonical basis
1-forms which satisfy the Lie algebra dωi = C ijkωj ^ωkC ijk being the
structure constants of the algebra.

The spatial metric gµν splits so that
gµν = exp(2λ) exp(�2β)µν where exp(2λ) is the scale factor of the
universe and βµν is a 3� 3 symmetric, traceless matrix, which can be
written in a diagonal form with two independent quantities, the
anisotropy parameters β+, β�, as follows:

βµν = diag

 
β+,�

1
2

β+ +

p
3
2

β�,�
1
2

β+ �
p
3
2

β�

!
. (6)
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written in a diagonal form with two independent quantities, the
anisotropy parameters β+, β�, as follows:

βµν = diag

 
β+,�

1
2

β+ +

p
3
2

β�,�
1
2

β+ �
p
3
2

β�

!
. (6)
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Lagrangian description

The Lagrangian leading to the full Bianchi scalar �eld dynamics is

L = e3λ

�
R� + 6λ� 3

2
(β̇
2
1 + β̇

2
2)� φ̇

2
+ V (φ)

�
(7)

R� is the Ricci scalar of the 3 dimensional spatial hypersurfaces given
by the expression:

R� = �1
2
e�2λ

�
N21 e

4β1 + e�2β1

�
N2e

p
3β2 �N3e�

p
3β2

�2
� 2N1eβ1

�
N2e

p
3β2 �N3e�

p
3β2

��
+
1
2
N1N2N3(1+N1N2N3).

The constants N1,N2, and N3 are the components of the classi�cation
vector nµ and β1 = � 1

2 β+ +
p
3
2 β�, β2 = � 1

2 β+ �
p
3
2 β�.

It is important to note that the curvature scalar R� does not depend
on the derivatives of the anisotropy parameters β+, β� , equivalently
of β1, β2.
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The Euler Lagrange equations due to the Lagrangian (7) are:

λ̈+
3
2

λ̇
2
+
3
8
(β̇
2
1 + β̇

2
2) +

1
4

φ̇
2 � 1

12
e�3λ ∂

∂λ

�
e3λR�

�
� 1
2
V (φ) = 0

β̈1 + 3λ̇β̇1 +
1
3

∂R�

∂β1
= 0

β̈2 + 3λ̇β̇2 +
1
3

∂R�

∂β2
= 0

φ̈+ 3φ̇λ̇+
∂V
∂φ

= 0

where a dot over a symbol indicates derivative with respect to t.

We apply Theorem 1 and Theorem 2 in order to compute the Lie and
the Noether symmetries of class A Bianchi models.
Similar incomplete works on that topic Cotsakis S et. al. 1998 Grav.
Cosm. 4 314 , Capozzielo S et.al. 1997 J. Mod Phys. D 6 491, Vakili
B et. al. 2007 Class. Quantum Grav. 24 931.
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We consider the four dimensional Riemannian space with coordinates
x i = (λ, β1, β2, φ) and metric

ds2 = e3λ
�
12dλ2 � 3dβ21 � 3dβ22 � 2dφ2

�
. (8)

The metric is the conformally �at FRW spacetime whose special
projective algebra consists of the non gradient KVs

Y 1 = ∂β1
, Y 2 = ∂β2

, Y 3 = ∂φ, Y 4 = β2∂β1
� β1∂β2

Y 5 = φ∂β1
� 3
2

β1∂φ, Y 6 = φ∂β2
� 3
2

β2∂φ

and the gradient HV

H i =
2
3

∂λ , ψ = 1.

The Lagrangian is written L = T � U(x i ) where T = 1
2gij ẋ

i ẋ i is the
geodesic Lagrangian, the potential function is

U(x i ) = �e3λ (V (φ) + R�) (9)

and we have used the fact that the curvature scalar does not depend
on the derivatives of the coordinates β1, β2.
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We apply Theorem 1 and Theorem 2 to determine the Lie and the
Noether symmetries of the dynamical system with Lagrangian (7).

We determine the Lie and the Noether symmetries in the following
cases:
Case 1. Vacuum. In this case φ =constant.
Case 2. Zero potential V (φ) = 0, φ̇ 6= 0
Case 3. Constant Potential V (φ) =constant, φ̇ 6= 0
Case 4. Arbitrary Potential V (φ) , φ̇ 6= 0.
The results for Bianchi I and Bianchi II and Bianchi VI/VIIare shown
in the following tables
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Bianchi I

Bianchi I Noether Sym. Lie Sym.
Vacuum ∂t , Y 1, Y 2, Y 4 ∂t , t∂t , Y 1,2,4, H i

2t∂t +H i , t2∂t + tH i t2∂t + tH i

Zero Pot. ∂t ,Y 1�6 , 2t∂t +H i ∂t , t∂t , Y 1�6

t2∂t + tH i H i , t2∂t + tH i

Constant Pot. ∂t , Y 1�6 ∂t , Y 1�6,H i
1
C e

�Ct∂t � e�CtH i 1
C e

�Ct∂t � e�CtH i
Arbitrary Pot. ∂t , Y 1,2,4 ∂t , Y 1,2,4 ,H i

Exponential Pot. ∂t , Y 1,2,4 ∂t , Y 1,2,4 ,H i

2t∂t +H i + 4
d Y

3 t∂t + 2
d Y

3
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Bianchi II

Bianchi II Noether Sym. Lie Sym.
Vacuum ∂t , Y 2 ∂t , Y 2

6t∂t + 3H i � 5Y 1 1
3 t∂t +H

i , t∂t � Y 1
Zero Pot. ∂t , Y 2, Y 3, Y 6 ∂t , Y 2, Y 3, Y 6

6t∂t + 3H i � 5Y 1 1
3 t∂t +H

i , t∂t � Y 1
Constant Pot. ∂t , Y 2, Y 3, Y 6 ∂t , Y 2, Y 3, Y 6

3H i + Y 1

Arbitrary Pot. ∂t , Y 2 ∂t , Y 2, 3H i + Y 1

Exponential Pot. ∂t , Y 2 ∂t , Y 2, 3H i + Y 1

2t∂t +H i � 5
3Y

1 + 4
d Y

3 t∂t + 2
d Y

3
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Bianchi VI/VII

Bianchi VI0 / VII0 Noether Sym. Lie Sym.

Vacuum ∂t , 6t∂t + 3H i+ ∂t , H i + 1
3Y

1 +
p
3
3 Y

2

� 2Y 1 � 2
p
3Y 2 2t∂t � Y 1 �

p
3Y 2

Zero Pot. ∂t , Y 3 , 6t∂t + 3H i+ ∂t , H i + 1
3Y

1 +
p
3
3 Y

2

� 2Y 1 � 2
p
3Y 2 Y 3, 2t∂t � Y 1 �

p
3Y 2

Constant Pot. ∂t , Y 3 ∂t , Y 3, H i + 1
3Y

1 +
p
3
3 Y

2

Arbitrary Pot. ∂t ∂t , H i + 1
3Y

1 +
p
3
3 Y

2

Exponential Pot. ∂t , 6t∂t + 3H i � 2Y 1+ ∂t , H i + 1
3Y

1 +
p
3
3 Y

2

�2
p
3Y 2 + 6

d Y
3 t∂t + 1

d Y
3
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Bianchi VIII / IX

Bianchi VIII Noether Sym. Lie Sym.
Vacuum ∂t ∂t ,

2
3 t∂t +H

i

Zero Pot. ∂t , Y 3 ∂t , Y 3, 2
3 t∂t +H

i

Constant Pot. ∂t , Y 3 ∂t , Y 3

Arbitrary Pot. ∂t ∂t
Bianchi IX Noether Sym. Lie Sym.
Vacuum ∂t ∂t
Zero Pot. ∂t , Y 3 ∂t , Y 3

Constant Pot. ∂t , Y 3 ∂t , Y 3

Arbitrary Pot. ∂t ∂t
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