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Modifying gravity 

 Extra dimensions (string-theory, braneworlds)

 Massive Gravity

 Horava-Lifshitz gravity

 Scalar tensor theories (galileons-Horndenski)

Modifying gravity means changing the dynamical behavior of the 
theory  

A simple but still remarkable modification of gravity: Lovelock theory

 d>4 but still giving second order field equations which are 
divergent free

 the Lagrangian is constructed out of the sum higher powers of the 
curvature 2-form, up to powers k in the curvature

 In d=5 and d=6 it reduces to the Gauss-Bonnet (GB) 
combination, which involves quadratic curvature invariants

 
∫

ddx
√
−g

[
R− 2Λ + αĜ

]
where Ĝ = R2 − 4RαβRαβ + RαβγδR

αβγδ
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Here we will concentrate on theories with scalar fields which remain 
invariant under a conformal transformation (c.t.)

Why scalar tensor theories???

 from string theory point of view the graviton is accompanied by the dilaton

 the simplest modification, involving only one more d.o.f.

 Kaluza-Klein theory and braneworlds

 Resent interest in selftunning senarios 

Why conformal invariance???
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ḡµν = Ω2(x)gµν ds̄2 = Ω2(x)ds2

 GR is not invariant under conformal transformations

 

 Conformal transformation is a localized scale transformation 

 GR due to G is not renormalisable. Maybe conformal invariance is 
important

 Useful laboratory for black hole physics



Standard Conformal Invariance in d=4 and d>4
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Standard Conformal Invariance in d=4 and d>4

Substituting in the action we get: L = L1 + L2

Still after appropriate partial integration the second part can be set to zero

Finally we arrive at the same Lagrangian we started at the beginning

In d=4 we have the following transformation

ḡµν = Ω2(x)gµν φ̄ = Ω−1(x)φ

and we choose the following Lagrangian: L =
√
−ḡ

(
1
12

φ̄2R̄ +
1
2
ḡµν∇̄µφ̄∇̄ν φ̄

)

where

and L2 =
√
−g

(
1
2
φ2gµν∂µf∂νf − 1

2
Ω−1φ2!Ω− gµνφ∂µf∂νφ

)
with f = lnΩ

L1 =
√
−g

(
1
12

φ2R +
1
2
gµν∇µφ∇νφ

)
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In d>4 we have

ḡµν = Ω2(x)gµν φ̄ = Ω
2−d
2 (x)φ

we have the following Lagrangian: L =
√
−ḡ

(
φ̄2R̄ +

4(d− 1)
(d− 2)

ḡµν∇̄µφ̄∇̄ν φ̄

)

substituting the transformation we see that we end up in the same form of the 
Lagrangian

 the coefficient is important 
1
ξ

=
4(d− 1)
(d− 2)

 we could also add a proper self-interacting term without 
spoiling the invariance of the Lagrangian

 φ
2d

d−2 where again the proper power plays a key roleits form is

Can we construct more general actions???

More to come in the following...
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More General Conformal Invariance

We have already seen conformal transformations in d-dimensions 

gµν = Ω2(x)ĝµν φ = Ω
2−d
2 (x)φ̂

First tests...

This case of change of frame creates conformally invariant actions, since the 
metric is invariant by construction

ḡµν = φ
4

d−2 gµν → φ̂
4

d−2 ĝµν

7

A special conformal frame...

g̃µν = φ
4

d−2 gµν

conformally invariant termL0 =
√
−g̃Λ →

√
−gΛφ

2d
d−2

conformally invariant termL1 =
√
−g̃R̃ →

√
−g

(
φ2R− 4(d− 1)

(d− 2)
φ!φ

)



Can we construct more general actions that are still conformally 
invariant???

gµν = Ω2(x)ĝµν φ = Ω
2−d
2 (x)φ̂

Now we can see that the above tensor, after a LOT of algebra, remains 
invariant under the transformation

Now since it is a curvature tensor, it fulfills all the corresponding 
properties (Skew and interchange symmetry, first and second Bianchi 
identities)
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Let us start with the Riemann tensor...

R̃ρ
σµν = Rρ

σµν − 2
(
δρ
[µδα

ν]δ
β
σ − gσ[µδα

ν]g
ρβ

)
Ω−1 (∇α∇βΩ)

+2
(
2δρ

[µδα
ν]δ

β
σ − 2gσ[µδα

ν]g
ρβ + gσ[µδρ

ν]g
αβ

)
Ω−2 (∇αΩ) (∇βΩ)

Applying the afore mentioned change of frame we get

R̃ ζδ
αβ = φ

−4
(d−2) R ζδ

αβ − 4
2d

(d− 2)2
φ
−2d

(d−2) δ[δ
[α∇β]φ∇ζ]φ

− 4
(d− 2)2

φ
−2d

(d−2) δζδ
αβ∇

κφ∇κφ + 4
2

(d− 2)
φ

2+d
2−d δ[δ

[α∇β]∇ζ]φ



Since c.t.’s are like local scale transformations we should be able to define 
a covariant derivative that transforms appropriately and produces the 
previous tensor, which is suitable to construct gauge invariant  actions

We now have the building blocks in order to write a general action. A suitable 
action that is conformally invariant has to be a linear combination of terms 
of the form
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[Dµ, Dν ]V α = R̃α
βµνV β

We demand second order field eqs φ̈ must appear at most linearly 
This condition restricts the invariant tensor to be fully antisymmetric 
so that the only allowed possibility is that it turns out to be proportional 
to the  generalized Kronecker delta

X
α1···α2p

β1···β2p
= γpδ

α1···α2p

β1···β2p
αp = γp

d− 2p

2p+1

where X
α1···α2p

β1···β2p
is an invariant tensor

Ip =
∫

ddx
√
−gφ

2d
(d−2) X

α1···α2p

β1···β2p

(
R̃β1β2

α1α2
· · · R̃β2p−1β2p

α2p−1α2p

)
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Finally the most general action that is conformally invariant and leads 
to second order field equations for the scalar field is given by

where 1 ≤ k ≤ [
d− 1

2
]I[φ] = −

k∑

p=0

Ip

with [x] given by the integer part, stands for the higher power of the 
nonminimal couplings and

Ip =
2αp

d− 2p

∫
ddx
√
−gφ

2d
d−2 δ

α1···α2p

β1···β2p

(
R̃β1β2

α1α2
· · · R̃β2p−1β2p

α2p−1α2p

)

Notice that the action can be mapped to the Lovelock action for a suitably 
rescaled metric

where

I[φ] = −IL

[
φ

4
d−2 gµν

]

IL [g̃µν ] :=
k∑

p=0

2αp

d− 2p

∫
ddx

√
−g̃δ

α1···α2p

β1···β2p

(
R̃β1β2

α1α2
· · · R̃β2p−1β2p

α2p−1α2p

)
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Field equations and a special factorization

The field equation Eφ = 0 can be obtained by extremizing the action

under variations of the scalar field

δI[φ] = −δIL[g̃αβ ]
δg̃µν

δg̃µν

δφ
δφ Eφ := Ẽµν g̃µν = 0

where

Ẽµν =
1√
g̃

δIL[g̃αβ ]
δg̃µν

= Eµν [g̃αβ ]

Ẽα
β = −

k∑

p=0

αp

d− 2p
δ

αα1···α2p

ββ1···β2p

(
R̃β1β2

α1α2
· · · R̃β2p−1β2p

α2p−1α2p

)

Alternatively the field equation can be written as Eφ = −
k∑

p=0

αpẼ2p = 0

where Ẽ2p = δ
α1···α2p

β1···β2p
R̃β1β2

α1α2
· · · R̃β2p−1β2p

α2p−1α2p

stands for the dimensional continuation of the Eyler density from 2p to d 
dimensions 



The E.M.T. Tµν = − 1√
−g

δI[φ]
δgµν

=
1√
−g

δIL[g̃σγ ]
δg̃αβ

δg̃αβ

δgµν

so that it reduces to Tµν = φ2Ẽµν

Tµ
ν → Ω−dTµ

ν

Tµ
µ = φ

2d
d−2 Eφ

Eφ = c0δ
α1···α2k
β1···β2k

(
R̃β1β2

α1α2
+ c1δ

β1β2
α1α2

)
· · ·

(
R̃β2k−1β2k

α2k−1α2k
+ cpδ

β2k−1β2k
α2k−1α2k

)
= 0

Tα
β =

c0

d− 2k
φ

2d
d−2 δαα1···α2k

ββ1···β2k

(
R̃β1β2

α1α2
+ c1δ

β1β2
α1α2

)
· · ·

(
R̃β2k−1β2k

α2k−1α2k
+ cpδ

β2k−1β2k
α2k−1α2k

)

− 4
d− 2

k∑

p=0

αpx
p = c0

k∏

i=1

(x + ci)

The stress-energy tensor transforms 
homogeneously with conformal weight -d, and 
also the trace of the E.M.T. vanishes on shell

The field equation and the  E.M.T. can be factorized according to 

where the coefficients ci’s are related to the ai’s through the relation



I[φ] =
∫

ddx
√
−g

(
1
2
φ!φ− 1

8
d− 2
d− 1

φ2R +
(d− 2)2

8d(d− 1)
λφ

2d
d−2

)

!φ− 1
4

d− 2
d− 1

Rφ +
d− 2

4(d− 1)
λφ

d+2
d−2 = 0 R̃ = λ

I2 = γ2
1
2

∫
ddx
√
−gφ

2d
d−2 δα1α2α3α4

β1β2β3β4
R̃β1β2

α1α2
R̃β3β4

α3α4

= γ2

∫
ddx
√
−g

(
φ

2(d−4)
(d−2) (R2 − 4RαβRαβ + RαβγδR

αβγδ)

− 16
(d− 3)d
(d− 2)2

φ
−4

(d−2) Rαβ∇αφ∇βφ + 16
(d− 3)
(d− 2)

φ
d−6
d−2 Rαβ∇α∇βφ− 8

(d− 3)
(d− 2)

φ
d−6
d−2 R!φ

+ 16
(d− 3)
(d− 2)2

φ−
4

d−2 R∇αφ∇αφ− 16
(d− 3)(d− 1)d

(d− 2)3
φ

2d
d−2 (∇αφ∇αφ)2

− 32
(d− 3)
(d− 2)2

φ−
d+2
d−2∇αφ∇αφ!φ + 32

(d− 3)d
(d− 2)2

φ−
d+2
d−2∇α∇βφ∇αφ∇βφ

+ 16
(d− 3)
(d− 2)

φ−
4

d−2 (!φ)2 − 16
(d− 3)
(d− 2)

φ−
4

d−2∇α∇βφ∇α∇βφ
)

Examples

 The standard conformally coupled scalar field: k=1

 k=2 is the most general case in d=5 and d=6
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Non-trivial solutions

Configurations of constant rescaled curvature R̃ ζδ
αβ = −c̃δ ζδ

αβ

not only solve the field equation but also have a vanishing E.M.T., so 
they can be regarded as non-trivial vacua.

On flat euclidean space ds2 = dρ2 + ρ2dΩ2
d−1

the solution is given by φ =
[
ρ2

a
− c̃

4
a

]1− d
2

 regularity requires that c̃ < 0 and in odd dimensions the integration

constant α has to be positive.

 value of the action: I = −
k∑

p=0

Ip I0
p =

√
πΩd−1γp(−c̃)p− d

2
d!

(d− 2p)!
Γ

(
d
2

)

Γ
(

1+d
2

)with

For the case of a unit sphere Sd ds2 = dθ2 + sin2 θdΩ2
d−1

the solution is given by φ =
C

(
cos θ + ε

√
1− c̃C2 2

d−2

) d−2
2

 regularity requires that ε = 1 c̃C
4

d−2 < 0and

 value of the action: I = −
k∑

p=0

Ip I1
p = (−1)dI0

pwith



The YAMABE problem
Given a compact Riemannian manifold (M,g) of dimension n>2 find a 

metric conformal to g with constant scalar curvature.
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R̄ = e−2f (R + 2(d− 1)!f − (d− 1)(d− 2) (∇αf) (∇αf))

f = lnΩ

We have seen that under a conformal transformation the Ricci scalar 
transforms as

where

Identifying e2f = φp−2 where p =
2d

d− 2 we get

R̄ = φ1−p

(
4
d− 1
d− 2

!φ + φR

)

In order to have a constant scalar curvature, the scalar field φ must satisfy 
the Yamabe equation

φ1−p

(
4
d− 1
d− 2

!φ + φR

)
= λφp−1

The positive mass theorem is crucial in solving the Yamabe problem 
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Conclusions

We have presented a generalization of the standard action for the 
conformally coupled scalar field with second order field eqs.

C.I. strongly restricts the possible non-minimal couplings with higher 
powers of the curvature in the action

Configurations of constant rescaled curvature, correspond to non-trivial 
vacua of the theory (vanishing of the scalar field equation and identically 
vanishing E.M.T.)

In Euclidean constant curvature spaces, this class of solutions describe 
instantons, since they are regular everywhere and possess finite action 
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A generalization of the YAMABE problem... 

similarities with Lovelock theory are not a coincidence

the YAMABE problem could be extended to Lovelock theory in 
the following sense: 

Given a compact Riemannian manifold (M,g) of dimension n>3, is there a metric 
conformal to g such that the linear combination of the dimensional continuation 

the lower-dimensional Euler densities is constant?


