NER 15-Chanla-2012

Minds Tsoulkaldas
(cecs-valdivia)

Cow{-"ormal,tg Coupled Scalar
Frelds tn Higher Dlmensions:
nowntrivial vacua, tnwstantons
and a generalizatiown of the
Yamabe problem
(work tw progress with
RLcaroo Troncoso)




Modifying gravity
& Extra dimenstons (strlwg—theorg, braneworlds)
* Massive Gravity
+ Horava-Lifshitz gravity
o Scalartensor theories (galileons-Horndenski)

O  Modifying gravity means changing the dynamical behavior of the
theory

O A simple but still remearkable wmodification of gravity: Lovelock theory

* o>4 but still giving second order field equations which are
divergent free
* the Lagrangian s constructed out of the sum higher powers of the
curvature 2-form, wp to powers R in the curvature
o nd=5and d=6 it reduces to the Gauss-Bonnet (GB)
combination, which involves quadratic curvature tnvariants
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Here we will concentrate on theories with scalar fielos which remain
tnvariant under a conformal transformation (c.t.)

why scalar tensor theortes???
the simplest modification, involving only one more d.o.f.
from string theory point of view the gravitow is accompanied by the dilaton

Kaluza-Kletn theory and braneworlds
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Resent Lnterest in selftunning senartos

why conformal invariance???
— 2 52 2 2
Juv = () (aj>g,uy dssi =R (l’)dS
GR is not bnvaritant under conformal transformations

Conformal transformation is a localized scale transformation

GR due to g is wot renormalisable. Maybe conformal invariance is
importawt

useful laboratory for black hole physics
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standard Conformal nwvariance in d=4 and d>4

O  tnod=4 we have the following transformation
g/ﬂ/ = Q2(x)guu & = Q_l(x)¢

and we choose the following Lagrangian: L = ./— < ¢*R+ = .

5,89, ¢)

Substituting in the action we get: L = L1 + Lo

1 1
where £L1=v—g (E¢52R 28 59“”VM¢VV¢)

anol 52:\/_( $2g" 0, fO, f — Q 14200 — gwwufayqb) with  f =1nQ

Still after appropriate partial integration the second part can be set to zero

Finally we arrive at the same Lagrangian we started at the beginning




In d>4 we have

= 2—d
g,uu = Q2(£)g,uz/ Qb ==l

Yd=1) g 30 3
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we have the following Lagrangiaw: L=+- ( ¢’ R +

substituting the transformation we see that we end up in the same form of the
Lagranglan
* the coefficlent Le e Lmportant
& (d-2)
o Wwecould also add a proper self-Lnteracting term without

spotling the tnvariance of the Lagrangian
* itsformis ga=z where again the proper power plays a key role

can we construct more general actlons???

More to come Ln the following...
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More General Conformal tnvariance

we have achaolg seen conformal transformations tn d-dimensions
2 A 2—d %
Gur = ()G ¢=Q"72 ()
A special, conformal frame...
o e
Juv = ¢d_29w/

Flrst tests...

B = ke oo conformally tnvariant term

B e St e (¢2R s %(bm(b) conformally tnvariant term

This case of change of frame creates conformally tnvariant actions, since the
wmetric is tnvariant by construction

e, ele
Juv = ¢d_2 Juv
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can we construct more general actions that are still conformally
bnvariant???

Let us start with the Riemann tensor...

Rpa',ul/ = Rpa,ul/ = (5{;53] 5? 51/]9 > <vav59)

> (25[@ 5268 — 295,03, gpﬂ + Gofud?) ga5> Q2 (Vo) (V59)

Applying the afore mentioned change of frame we get
- —4 2d 2
(@0 e e OB CEP @
R, =¢TDR g 4(d—2)2¢(d )6aV5](/5V lp
4 24d [§
d 2 b 4 = ¢]
(d L ) (5 V OV P + e >¢ d5aV@]V )

Now we can see that the above tensor, after a LOT of algebra, remains
tnvariant under the transformation

2R
po = (@) ¢ =0z (z)¢
Now siwce Lt s @ curvature tensor, it fulfills all the corresponding

properties (Skew and interchange symmetry, first and second Bianchi
Ldentities)



Since c.t.’s are Like Local scale transformations we should be able to define
a covariant derivative that transforms appropriately and produces the
previous tensor, which is suitable to construct gauge tnvariant actions

[D/MDV] Ve = B,uuvﬁ

we now have the building blocks twn order to write a general action. A suitable

action that is conformally invariant has to be a Linear combination of terms
of the form

I /ddaj s ¢(d 2) qu azp (Rﬂélﬁéz, R/BQp 182p >

Q2p—102p

where X! o 5 22 e an tnvariant temsor

we demand second order field egqs —s ¢ must appear at wmeost linearly
This condition restricts the invariant tensor to be fully antisymmetric
so that the only allowed possibility is that it turns out to be proportional
to the generalized Kronecker delta

al...a2p al...a2p d i 2p

B v 7p551...52p O i D op+1




Finally the most general action that is conformally invariant and leads
to second order field equations for the scalar field is given by

—Z[p where 1<k<[T1]

with [x]1 given by the integer part, stands for the higher power of the
nonminimal couplings and

20

I
pd2

/ddm\/_¢d 25&1 Oézp (Rﬁélﬁfm, . RB2p—1B2p )

a2p—-102p

Notice that the action can be mapped to the Lovelock action for a suitably
rescaled metric

I¢g] = —Ig [(bﬁgw}

where

Ip [guw] = Z




Field equations and a spectal factorization
The field equation Ey = 0 can be obtained by extremizing the action
wnder variations of the scalar field

_o1L[g?) o
ogH” 0o

§I[¢] = 5 o=t =0

where

e S RGeS e
fw = 75 ggu = Ewlies

k
= i ap aal...a2 ""ﬁ /8 ""/8 - /8
gaﬂ SIS Z = 2p5551“'52pp (R 0141342 sty égpilé’;p
p=0
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Alternatively the field equation can be written as £y = — Z apEap =0
= = = —)

where Eop = 5;‘11...522:1?51@ .+ RP2p-1B2p ~

109 a2p—102p

stands for the dimensional continuation of the Eyler olcwsitg from 2p to d
dimenstons
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so that it reduces to Ty = qb25,w

—d
The stress-energy tensor transforms il ke
homogeneously with oow{orma,l, wetght -d, and T* — gbdQTd? E,
also the trace of the E.M.T. vanishes own shell

The field equation and the E.M.T. can be factorized according to

2k 102

£5 = codg o (R%%Q 4 165152 ) (Rﬁzklﬁ% + ¢, 0P2x—1Pa ) 0

X2k —102k a2k 102k

Co 2d_ = 2
T = st nn e (R, + a0l ) - (Romps, + o, )

where the coefficlents c¢;’s are related to the a;’s through the relation
k




* The standard conformally couqsLeal scalar field: k=1

1] = /ddxr( 606 125y %ao)

Sdess) T g

O P e R =

* R=21is the most general case in d=5 and d=6
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Now-trivial solutions

: 5 GO e
Configurations of constant rescaled curvature R, BC = —C5ag
wot only solve the field equation but also have a vanishing E.M.T., so
they caw be regarded as non-trivial vacua.

P C
— — —a
a 4

own flat euclidean space st e el [ gvE ] ik

the solution Ls given bg ¢

* regularity requires that ¢ < 0 and in odd dimensions the integration

constant ¢ has to be positive.

2 d!

o valuwe of the action: [ — — Z[p with 10 = VT 17p(—E)P %

= [k =2y

For the case of @ unit sphere S9 ds—ld0 2 s C’

O

the solution Ls glven b
g J <COS@—|—€\/1—5C2%)

i
* regularity requires that e =1 and cCd-2 <0

k
* valueoftheaction: 1= Y"1, with I, =(-1)"I)
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The YAMARE problem
Given a compact Riemannian manifold (M,g) of dimension n>2 find a
metric conformal to g with constant scalar curvature.
O  we have seen that under a conformal transformation the Ricel scalar
transforms as

R o R e (e (2 S (e )

where [ = Inf)

il

tdentifying 2/ — ¢P=2  \where P=_-Ty weget

= gl =1
R=¢'"?P|4——0¢+ ¢R
d==
ln order to have a constant scalar curvature, the scalar field ¢ must satisfy
the Yamabe equation

Gn (4—3 - ;qu + qu) = AP

The positive mass theorem is crucial in solving the Yamabe problem




Conclustons

we have presented a generalization of the standard action for the
conformally coupled scalar field with second order field egs.

C.l. strongly restricts the possible non-minimal couplings with higher
powers of the curvature in the action

Configurations of constant rescaled curvature, correspond to non-trivial
vacua of the theory (vanishing of the scalar field equation and tdentically
vanishing E.M.T.)

n Buclidean constant curvature spaces, this class of solutions describe
nstantons, since they are regular everywhere and possess finite action




O A generalization of the YAMARE problem...

simtlartties with Lovelock theory are not a colncloence

the YAMABE probLem could be extended to Lovelock theorg Y
the following sense:

Given a compact Riemannian manifold (M,g) of dimension n>3, s there a wmetric
conformal to g such that the linear combination of the dimensional continuation
the Lower-dimensional Euler denstties Ls constant?




