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Causal Set: Definition

(a) Partially Ordered Set

(b) The order relation is the causal relation.

(c) Locally finite

• Partially Ordered Set: a set P with relation
≺, such that ∀ x, y, z ∈ P:

(a) x ≺ y and y ≺ z ⇒ x ≺ z: Transitivity

(b) x ≺ y and y ≺ x ⇒ x = y: Acyclicity

• Locally Finite: {z|x ≺ z ≺ y} is a finite set
for all x, y ∈ P. (ie. Discrete rather than Con-
tinuous)
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Motivation

Why Discrete?

- Indications from several other approaches to
QG of some space(time) discretness.

- Infinities + Singularities in GR, QFT and
black hole thermodynamics.

- Suggestions for modifying Gravity (see e.g.
cosmological constant problem).

Why Causal?

- Direct physical motivation (cause-effect). Stan-
dard spacetime, is less natural (assuming topol-
ogy+differential structure+metric).

- Causal relations include most of the infor-
mation of a Lorentzian manifold (apart from
conformal info

√
−gd4x).
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How can a Causal Set

replace Spacetime?

Theorem(Malament): The metric of

a globally hyperbolic spacetime can be

reconstructed uniquely from its causal

relations up to a conformal factor.∗

• For a discrete spacetime, one can fix the

remaining degree of freedom, by equating the

volume V with the number of elements N (we

can fix the units, by assuming that a single

element corresponds to a unit Plank volume).

Order+Number=Geometry

∗David Malament, J. Math. Phys 18: 1399 (1977)
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Central Conjecture: Two distinct, non-

isometric spacetimes cannot arise from

a single causal set.

A natural question that arises, is when can we

say that a particular causal set is well approx-

imated by a manifold. For this we use the

concept of faithful embedding

Faithful Embedding: A map ϕ from

a causal set to a manifold M such that

(a) Preserves causal relations (i.e. x ≺
y ⇐⇒ ϕ(x) ≺ ϕ(y)).

(b) The number of elements N mapped

into any Alexandrov neighborhood,

is equal to its spacetime volume V

up to poisson fluctuations,

i.e. N = V ±O(
√
V )



(c) M doesn’t possess curvature at scales
smaller than that of the “intermolec-
ular spacing” of the embedding.

Using this definition, we can easily see that a
regular lattice of (say) 2− d Minkowski space-
time does NOT embed faithfully to M2.

Instead, we need a random lattice. (e.g. one
generated, by sprinkling elements in spacetime,
randomly, with probability P (n) = (ρV )ne−ρV

n!
i.e. a Poisson sprinkling.)



Kinematics and

Phenomenology

• Links: x ≺ y are linked if @ z| x ≺ z ≺ y.

• Chain C: ∀ x, y ∈ C x ≺ y or y ≺ x.

Dimension of causal set: ‘Midpoint-scaling’,

compare the ‘proper time’ (longest chain) of

two related elements, with the volume (num-

ber of elements between the two). Other mea-

sures exists that give fractal dimension for causets

non-embedable to manifolds.

Topology of the causal set: one needs to con-

sider the analogue of spacelike surface, which

is a maximal anti-chain (collection of elements,

that are all un-related). One considers the
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(immediate) future and past (‘thickened’ anti-

chain). Get neighborhoods for each element,

and construct a simplicial complex that gives

the homology of the slice. Agreement with

continuous topology.

Geometry: Timelike distance: ∗:
dt(x, y) := max |Ci ∩ J+(x) ∩ J−(y)|
and |A| is set cardinality. It is the maximum

steps needed to go from x to y.

Spacelike distance: more subtle. Using rela-

tions one can recover the spacelike distance

for causets embedded in Minkowski †. Can

use this to obtain lengths of curves in curved

spacetime.

∗G. Brightwell and R. Gregory, Phys. Rev. Lett. 66: 260-263

(1991)

†D. Rideout and P. Wallden, Class. Quant. Grav. 26 (2009)
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Phenomenology: Elements of causal set na-

ture of spacetime could be apparent even prior

constructing full quantum dynamics. Indica-

tively:

Cosmological Constant Problem: Heuristic Ar-

gument, how discreteness of spacetime along

with Lorentz invariance leads to a non-zero

cosmological constant of the order of magni-

tude of the critical density and thus in agree-

ment with the actual value. Importantly that

prediction was made as early as 1991 (prior the

experiments)‡

Entropy bounds and BH entropy: Fundamen-

tal discreteness can account for the finite value

of entropy bounds and BH entropy, as counting

fundamental degrees of geometry crossing the
‡R. Sorkin, in Relativity and Gravitation: Classical and Quantum,

pp. 150-173. World Scientific, Singapore, 1991.

M. Ahmed, S. Dodelson, P. Greene and R. Sorkin, Phys. Rev.

D69 (2004) 103523.



horizon. Counting links that cross the horizon

is one attempt§.

Deviations of motion on Causet: Possible de-

viation of a particle moving on a discrete ran-

dom background rather than a continue space-

time. Indeed leads to a diffusion type equation,

however deviations are beyond observation in

current experiments.

§D. Dou and R. Sorkin, Found. Phys. 33 (2003) 279



Dynamics: Introduction

- What is the effect on quantum matter and
fields, if we replace continuum spacetime with
a causal set.

- What dynamics could a pure classical causal
set have, that would be intrinsic to the defini-
tion of a causet

- How could one formulate quantum dynamics
of a causal set and how one would interpret
it. Two approaches: (a) bottom-up (start-
ing from fundamental relations of causal set)
(b) top-down (get motivation from continuous
spacetime and make analogy for causet)

- “Entropy” problem. Most causets are not
manifold like. By counting, the vast major-
ity of causets, are 3-layers with n/4 in layer 1,
n/2 at layer 2 and n/4 at layer 3 (Kleitman-
Rothschild). Dynamics should select causal
sets that are manifold like.
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Dynamics: Quantum

Matter on Classical Causet

- Matter can appear on a causet in two ways:

(1) From the fundamental relations. Matter

degrees of freedom can appear for example in

a Kaluza-Klein way.

(2) Model matter ON a causal set (this is ex-

plored here)

• Causal set analogue of Green’s function for

given field is a property of the causet. It

can been shown that Gret+Gadv = 1/2(L+

LT ) in 4d, where L is the link matrix.

The d’Alembertian can be recovered from

symmetrising and inverting∗.
∗S. Johnston, Class. Quant. Grav. 25, 202001 (2008)
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• Alternatively one considers a slowing vary-

ing (at some frame) field ϕ(x) and uses

�dϕ(u, v) = 1
a2
(ϕ(u, v)−ϕ(u−a, v)−ϕ(u, v−

a)+ ϕ(u− a, v− a)) to define the operator:

Bϕ(x) =
4

a2
(−

1

2
ϕ(x) +

∑
y∈N1(x)

ϕ(y)

−2
∑

y∈N2(x)

ϕ(y) +
∑

y∈N3(x)

ϕ(y))

which can be shown (confirmed by simu-

lations) to agree in average value with the

d’Alembertian for flat space in the suitable

limit. Ni is the set of elements i steps

distance from x. Further care is needed

to guarantee the variations are also con-

trolled†.

†R. Sorkin, in “Towards Quantum Gravity”, Cambridge University
press, 2007



• Curved spacetime:

Using expressions for the Ricci scalar in

terms of volume and proper distance of

small causal intervals‡ the expression for

the d’Alembertian in flat space (B) changes

by a term:

Bϕ(x) = (�−
1

2
R)ϕ(x)

Applying this to a constant filed ϕ(x) =

constant gives an expression of the Ricci

scalar for causet.

‡Gibbons and Solodukhin, Phys. Lett. B652 (2007)



This leads to the causal sets Einstein-Hilbert

action for causets in curved spacetime in 2

and 4 dimensions (has been generalised for

arbitrary dimensions)§:

Benincasa-Dowker Action

1

~
S(2)=N−2N1+4N2−2N3

1

~
S(4)=N−N1+9N2−16N3+8N4

§D. Benincasa and F. Dowker, PRL 104, 181301 (2010)



Classical (stochastic)

Dynamics

Sequential Growth (growing a causet by giving

‘births’ element by element)∗

(a) General Covariance (‘time’ labeling is pure

‘gauge’)

(b) ‘Bell’s Causality’ (‘births’ in spacelike re-

gions do not affect each other)

Set of solutions parametrized by some con-

stants.

Not in general manifold like.

∗D. Rideout and R. Sorkin, Phys. Rev. D 61 (2000) 024002.
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INTRINSIC to causal set (bottom-up).

The poset of finite causal sets
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Quantum Dynamics

& Interpretation

- Purpose: To assign a quantum amplitude to

each of the possible causal sets

- CANNOT have canonical formulation, be-

cause of the fundamental spacetime nature.

Needs a histories formulation.

(1) Either extend a “quantum” measure, by a

growth process like the Rideout-Sorkin model

(a) Have a quantum rather than classical mea-

sure (issues extending the measure on the full

histories space)

(b) Use a weakened “Bell’s locality” condition

to incorporate relevant quantum violations
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(2) Or assign a weight on causets e.g. by mim-

icking the Einstein-Hilbert Action for causets.

In both cases, one should be able to interpret

the quantum measure (see below).

In (1) progress for defining the quantum mea-

sure and extending it to all measurable subsets

has been made. No suitable generalisation of

the Bell’s locality condition is present.

In (2) we have the following directions:

-Consider equal weights, BUT restrict sum over

some particular sub-class of causal sets. For 2-

D partial orders (restriction of sum), the domi-

nant contribution (at large volume limits) comes

from causal sets that correspond to 2-D Minkowski

spacetime∗.
∗G. Brightwll. J. Henson and S. Surya, Class. Quant. Grav. 25

(2008) 105025.



- Attempt to mimic the Einstein-Hilbert action
(to adjust weights). Write down an analogue
of the Lagrangian density for causal set, us-
ing only the causal order. Main recent devel-
opment is the Benincasa-Dowker action and
generalisations.

In all this we are able to assign an amplitude to
each causal set (histories) of the system. This
defines a quantum measure on the space of all
causal sets. It is not a proper measure, since
it fails to obey the additivity condition due to
interference.

How to Interpret the Quantum Measure?

(1) Find re-labelling invariant questions (dif-
feomorphism’s invariant)

(2) Have a way to understand the quantum
measure without resorting to (a) external ob-
servers and (b) repetitions of experiments



- Novel interpretation of QT, the “Co-event

Interpretation”, based on consistent histories.

Interprets the quantum measure, is realistic

(no-external observer). Pioneered by R. Sorkin

and collaborators†.

†R.D. Sorkin, J. Phys. Conf. Ser. 67 (2007) 012018; Y. Ghazi-

Tabatabai and P. Wallden, J. Phys. A: Math. Theor. 42 (2009)

234303; S. Surya and P. Wallden, Found. Phys. 40 (2010) 585;

K. Clements, F. Dowker and P. Wallden arXiv:1201.6266



Summary and Conclusions

• We introduced causal sets and how they
are expected to replace spacetime

• We briefly explored the kinematics and phe-
nomenology of the theory.

• The behaviour of quantum matter and fields
on a classical causal set was examined.

• The classical stochastic dynamics of causets
were explored as a growth stochastic pro-
cess.

• Finally, directions to full quantum dynam-
ics of causets and its interpretation was ex-
plored. A top-down approach is more de-
veloped, and the co-event interpretation of
the quantum measure is considered more
suitable.
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