Effective Equations of Motion, Decoherence and Backreaction

(In Preperation)

Andreas Zoupas

Department of Mechanical Engineering,

University of Thessaly. anzoupas@uth.gr

NEB 15, 22-06-2012, Chania, Crete

Question: What is the Nature of Coupling Quantum to Classical? Is it Possible to Construct a Consistent Model for Dynamical Coupling Between Quantum and Classical Systems?

This Issue is Related to

- Quantum Measurement
- Systems Lying in the Domain Between The Fully Classical and Quantum Regimes

• Semiclassical Theories (e.g. Semiclassical Gravity) $G_{\mu\nu} = 8\pi G \langle T_{\mu\nu} \rangle$

(Traditional approach: Couple to mean values)

Our Aims:

- Derive from First Principles the Backreaction of Quantum Degrees of Freedom to Classical ones in the Context of Environmentally Induced Decoherence.
- Test Features of Decoherence in Relation to Classicality

The Model

Particle(Classical)(could be interpreted as a measuring device) couples to a Thermal Bath of Harmonic Oscillators and to Another Particle (Quantum). Quantum Brownian Motion (QBM) Models.

We Expect that coupling to the Environment induces decoherence and hence Classicality (??)

The Technique

Path Integral Representation for the Density Operator and the Influence Functional Technique

Detailed Description of the Model

 Whole System is Closed: A Thermal Bath of Harmonic Oscillators couples Linearly in Position with the Classical Particle which in turn Interacts with the Quantum Particle linearly in position. Dynamics governed by the Hamiltonian:

$$\hat{H} = \frac{\hat{P}_x^2}{2M_x} + \frac{1}{2}M_x\omega_x^2\hat{X}^2 + \frac{\hat{p}_y^2}{2m_y} + \frac{1}{2}m_y\omega_y^2\hat{y}^2 + \lambda\hat{X}\hat{y} + \sum_n \left(\frac{\hat{p}_n^2}{2m_n} + \frac{1}{2}m_n\omega_n^2\hat{q}_n^2\right) + \hat{X}\sum_n c_n\hat{q}_n$$
(1)

• We Trace out the Environmental Degrees of Freedom:

Some Machinery...

Full Density Operator Evolution

$$\rho(\hat{t}) = J(t, t_0)\rho(\hat{t}_0)$$

In position representation the Propagator J is:

$$J(x,q,x',q',t|x_i,q_i,x_i',q_i',0) = \\ \mathcal{K}(x,q,t|x_i,q_i,0)\mathcal{K}^*(x',q',t|x_i',q_i',0) \\ = \int_{x_i}^x Dx \int_{q_i}^q Dq \exp\left[\frac{i}{\hbar}S[x,q]\right] \\ \times \int_{x_i'}^{x'} Dx' \int_{q_i'}^{q'} \exp\left[-\frac{i}{\hbar}S[x',q']\right]$$

with operator ${\cal K}$ the evolution operator for the wave functions.

Reduced Density Operator: Suppose Full Density Operator takes the form, $\rho(x,q; x',q')$, in position representation, then the Reduced Density Operator for the x degrees of freedom (recall marginal distribution in probability theory) is given by,

$$\rho_r(x,x') = \int_{-\infty}^{+\infty} dq \int_{-\infty}^{+\infty} dq' \rho(x,q; x',q') \delta(q-q')$$

Model Continued...

Time Evolution for the Reduced Density Operator of Classical+Quantum System:

$$\begin{aligned} \hat{\rho}_{t}(X_{f}y_{f};X_{f}'y_{f}') &= \\ \int_{0}^{t} dX_{0}dy_{0}dX_{0}'dy_{0}' \\ \mathcal{J}(X_{f}y_{f},X_{f}'y_{f}',t|X_{0}y_{0},X_{0}'y_{0}',0) \ \hat{\rho}_{0}(X_{0}y_{0},X_{0}'y_{0}') \end{aligned}$$

Assumptions

 The initial density operator is taken to be factored

- The environment is taken to be Ohmic and is assumed to start in a Thermal State.
- We work in the Fokker-Planck limit and neglect dissipation.

 $\mathcal{J}(X_f y_f, X_f' y_f', t | X_0 y_0, X_0' y_0', 0)$ May then be evaluated but Most Important can be expressed as:

$$\mathcal{J}(X_f y_f, X_f' y_f', t | X_0 y_0, X_0' y_0', 0) = \int \mathcal{D}\overline{x} \, \mathcal{K}_{\overline{x}}(X_f y_f, t | X_0 y_0, 0) \, \mathcal{K}^*_{\overline{x}}(X_f' y_f', t | X_0' y_0', 0)$$

Then

$$\widehat{\rho}_t(X_f y_f; X_f' y_f') = \int \mathcal{D}\overline{x} \ \Psi_{\overline{x}}(X_f \ y_f, t) \ \Psi_{\overline{x}}^*(X_f' \ y_f', t)$$

With the unnormalized

$$\Psi_{\overline{x}}(X_f y_f, t) = \int dX_0 dy_0 \, \mathcal{K}_{\overline{x}}(X_f y_f, t | X_0 y_0, 0) \, \Psi_0(X_0 y_0, 0)$$

Expression for $\mathcal{K}_{\overline{x}}(X_f y_f, t | X_0 y_0, 0)$:

$$\begin{split} \mathcal{K}_{\overline{x}}(X_{f}y_{f},t|X_{0}y_{0},0) &= \\ \int \mathcal{D}X\mathcal{D}y \, \exp\left(-\frac{\alpha^{2}}{2}\int dt \ (X-\overline{x})^{2}\right) \\ &\times \exp\left(\frac{i}{\hbar}\int dt(\frac{1}{2}M_{x}\dot{X}^{2}-\frac{1}{2}M_{x}\omega_{x}^{2}X^{2})\right) \\ &\times \exp\left(\frac{i}{\hbar}\int dt(\frac{1}{2}m_{y}\dot{y}^{2}-\frac{1}{2}m_{y}\omega_{y}^{2}y^{2}-\lambda Xy)\right) \end{split}$$

Asymptotic Behavior: Evaluation of Path Integral shows that in the Long Time Limit

$$\begin{aligned} \mathcal{K}_{\overline{x}}(X_{f}y_{f},t|X_{0}y_{0},0) \rightarrow \\ \exp\left[+\frac{i}{\hbar}C_{11}(X_{f}^{2}+X_{0}^{2}) +\frac{i}{\hbar}C_{22}(y_{f}^{2}+y_{0}^{2}) \right. \\ \left. -\frac{i}{\hbar}C_{12}(X_{f}y_{f}+X_{0}y_{0}) +\frac{i}{\hbar}C_{31}X_{f} +\frac{i}{\hbar}C_{32}y_{f} \right. \\ \left. +\frac{i}{\hbar}C_{41}X_{0} +\frac{i}{\hbar}C_{42}y_{0} -\frac{i}{\hbar}C_{5} -\frac{\alpha^{2}}{2}\int_{0}^{t}d\tau\overline{x}^{2} \right] \end{aligned}$$

where

$$C_{ij}, C_5 - -->$$
 parameters...
 $\alpha^2 \propto KT/\hbar^2 - ->$ constant

Most Important Feature of $\mathcal{K}_{\overline{x}}(X_f y_f, t | X_0 y_0, 0)$:

Initial and Final Degrees of Freedom are Decoupled!

With Redefinitions:

$$\begin{split} &\mathcal{K}_{\overline{x}}(X_{f}y_{f},t|X_{0}y_{0},0) = \\ &N \overline{\langle X_{f}y_{f} | \overline{P}_{x} \ \overline{Q}_{x} \ \overline{p}_{y} \ \overline{q}_{y} \rangle} \exp\left(-\frac{i}{\hbar}C_{11} \ \overline{Q}_{x_{f}}^{2} - \frac{i}{\hbar}C_{22} \ \overline{q}_{y_{f}}^{2}\right) \\ &\times \exp\left(\frac{i}{\hbar}(C_{11} \ X_{0}^{2} + C_{22} \ y_{0}^{2} - C_{12} \ X_{0}y_{0} + C_{41} \ X_{0} + C_{42} \ y_{0})\right) \\ &\times \exp\left(-\frac{i}{\hbar}C_{5} - \frac{\alpha^{2}}{2} \int_{0}^{t} d\tau \ \overline{x}^{2}\right) \end{split}$$

Where

$$\langle X_f y_f | \overline{P}_x \, \overline{Q}_x \, \overline{p}_y \, \overline{q}_y \rangle = \\ \exp\left(\frac{i}{\hbar} C_{11} (X_f - \overline{Q}_x)^2 + \frac{i}{\hbar} C_{22} (y_f - \overline{q}_y)^2 - \frac{i}{\hbar} C_{12} (X_f - \overline{Q}_x) (y_f - \overline{q}_y) + \frac{i}{\hbar} \overline{P}_x X_f + \frac{i}{\hbar} \overline{p}_y y_f \right)$$

 $\langle X_f y_f | \overline{P}_x \, \overline{Q}_x \, \overline{p}_y \, \overline{q}_y \rangle$ is a 2-Dimensional Gaussian.

It Satisfies a Generalized Uncertainty Relation

$$(\Delta(\hat{X}))^{2} (\Delta(\hat{P}_{x}))^{2} - R_{x}^{2} = (\Delta(\hat{y}))^{2} (\Delta(\hat{p}_{y}))^{2} - R_{y}^{2}$$
$$= \frac{\hbar^{2}}{4} \left(1 + \frac{|C_{12}|^{2}}{\Delta_{c}}\right)$$

 $R_x \equiv \frac{1}{2} \langle \hat{X} \hat{P}_x + \hat{P}_x \hat{X} \rangle - \langle \hat{X} \rangle \langle \hat{p}_X \rangle$ (similarly for R_y) and $\Delta_c = 4Im(C_{11})Im(C_{22}) - Im^2(C_{11})$. The generalized uncertainty relation is Constant with Time but Not Necessarily Minimized.

The Density Operator

Calculations yield that

 $\begin{aligned} \widehat{\rho}_{t}(X_{f}y_{f};X_{f}'y_{f}') &= \\ \int dP_{x}dQ_{x}dp_{y}dq_{y} \ f(P_{x} \ Q_{x} \ p_{y} \ q_{y},t) \\ &\times \langle X_{f}y_{f}|P_{x} \ Q_{x} \ p_{y} \ q_{y} \rangle \langle P_{x} \ Q_{x} \ p_{y} \ q_{y}|X_{f}'y_{f}' \rangle \end{aligned}$ Where $f(P_{x} \ Q_{x} \ p_{y} \ q_{y},t)$ is Positive by Construction.

THIS IS THE MAIN RESULT

Discussion

The Density operator Acquires a Stationary Form, prerequisite for a Classical Regime.

Its form guarantees damping of initial intereference.

• Both of these properties are characteristic of Decoherence

BUT

Both Classical and Quantum Particle Decay into a Mixture of States With Each State Expressing Correlations Between the Two Systems, i.e. Quantum Entanglement!. This means

- We cannot assign properties to individual subsystems.
- The Stationarity Property and damping of intereference Expected with Decoherence is not Enough to Ensure Classicality.

THUS

Decoherence Cannot Solve the Measurement Problem!

To be Done...

Can we at least say something about the effective equations of Motion?

• Effective Equations: It is an expected feature that the equations of motion for the "Classical" particle are:

$$M_x \ddot{X} + M_x \omega_x^2 X + \lambda^2 \int_0^t dt' G(t, t') X(t')$$

= $\lambda y_{\Sigma_0} \cos \omega_y t + \lambda \frac{k_y}{\omega_y} \sin \omega_y t$

The "Classical" Equations of Motion of the Quantum System act as a Forcing Term with initial data distributed according to its initial Wigner Function. Remains to be checked...

- Examine Different Model: The quantum particle interacts with an environment as well. Will this lead to different results concerning Quantum Entanglement?
 - In this model the Classical Particle is to be interpreted as a measuring device just recording but not inducing Classiclality.
- Examine connection to traditional (Semiclassical) approach and if any meaning can be given to it.