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Question: What is the Nature of Coupling Quan-

tum to Classical? Is it Possible to Construct a Consis-

tent Model for Dynamical Coupling Between Quantum

and Classical Systems?

This Issue is Related to

• Quantum Measurement

• Systems Lying in the Domain Between The Fully

Classical and Quantum Regimes
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• Semiclassical Theories (e.g. Semiclassical Gravity)

Gµν = 8πG〈Tµν〉

(Traditional approach: Couple to mean values)



Our Aims:

• Derive from First Principles the Backreaction of

Quantum Degrees of Freedom to Classical ones in

the Context of Environmentally Induced Decoher-

ence.

• Test Features of Decoherence in Relation to Clas-

sicality
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The Model

Particle(Classical)(could be interpreted as a mea-
suring device) couples to a Thermal Bath of Har-
monic Oscillators and to Another Particle (Quan-
tum). Quantum Brownian Motion (QBM) Models.

We Expect that coupling to the Environment in-
duces decoherence and hence Classicality (??)

The Technique

Path Integral Representation for the Density Oper-
ator and the Influence Functional Technique
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Detailed Description of the Model

• Whole System is Closed: A Thermal Bath of Har-
monic Oscillators couples Linearly in Position with
the Classical Particle which in turn Interacts with
the Quantum Particle linearly in position. Dynam-
ics governed by the Hamiltonian:
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• We Trace out the Environmental Degrees of Free-
dom:
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Some Machinery...

Full Density Operator Evolution

ˆρ(t) = J(t, t0) ˆρ(t0)

In position representation the Propagator J is:

J(x, q, x′, q′, t|xi, qi, x′i, q
′
i,0) =

K(x, q, t|xi, qi,0)K∗(x′, q′, t|x′i, q
′
i,0)

=
∫ x
xi
Dx

∫ q
qi
Dq exp
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i
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]
×
∫ x′
x′i
Dx′

∫ q′
q′i

exp
[
−
i

~
S[x′, q′]

]
with operator K the evolution operator for the wave

functions.

6



Reduced Density Operator: Suppose Full Density

Operator takes the form, ρ(x, q; x′, q′), in position

representation, then the Reduced Density Opera-

tor for the x degrees of freedom (recall marginal

distribution in probability theory) is given by,

ρr(x, x
′) =

∫ +∞

−∞
dq
∫ +∞

−∞
dq′ρ(x, q; x′, q′)δ(q − q′)
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Model Continued...

Time Evolution for the Reduced Density Operator

of Classical+Quantum System:

ρ̂t(Xfyf ;X ′
f
y′
f
) =∫ t
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′
0
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0
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0
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′
0
y′

0
)

Assumptions

– The initial density operator is taken to be fac-

tored
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– The environment is taken to be Ohmic and is
assumed to start in a Thermal State.

– We work in the Fokker-Planck limit and neglect
dissipation.

J (Xfyf , X
′
f
y′
f
, t|X0y0, X

′
0
y′

0
,0) May then be evaluated

but Most Important can be expressed as:

J (Xfyf , X
′
f
y′
f
, t|X0y0, X

′
0
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0
,0) =∫

Dx Kx(Xfyf , t|X0y0,0) K∗x(X ′
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f
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Then
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∫
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f
, t)
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With the unnormalized

Ψx(Xf yf , t) =
∫
dX0dy0 Kx(Xfyf , t|X0y0,0) Ψ0(X0 y0,0)

Expression for Kx(Xfyf , t|X0y0,0):
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Asymptotic Behavior: Evaluation of Path Integral

shows that in the Long Time Limit
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where

Cij, C5 −−− > parameters...

α2 ∝ KT/~2 −− > constant
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Most Important Feature of Kx(Xfyf , t|X0y0,0):

Initial and Final Degrees of Freedom

are Decoupled!

12



With Redefinitions:

Kx(Xfyf , t|X0y0,0) =
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i

~
C22(yf − qy)2

−
i

~
C12(Xf −Qx)(yf − qy) +
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)
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〈Xfyf |Px Qx py qy〉 is a 2-Dimensional Gaussian.

It Satisfies a Generalized Uncertainty Relation

(∆(X̂))2(∆(P̂x))2 −R2
x = (∆(ŷ))2(∆(p̂y))2 −R2

y

=
~2

4

(
1 +

|C12|2

∆c

)

Rx ≡ 1
2〈X̂P̂x+ P̂xX̂〉−〈X̂〉〈p̂X〉 ( similarly for Ry) and

∆c = 4Im(C11)Im(C22) − Im2(C11). The general-

ized uncertainty relation is Constant with Time but

Not Necessarily Minimized.
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The Density Operator

Calculations yield that

ρ̂t(Xfyf ;X ′
f
y′
f
) =∫

dPxdQxdpydqy f(Px Qx py qy, t)

× 〈Xfyf |Px Qx py qy〉〈Px Qx py qy|X
′
f
y′
f
〉

Where f(Px Qx py qy, t) is Positive by Construction.

THIS IS THE MAIN RESULT
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Discussion

The Density operator Acquires a Stationary Form,

prerequisite for a Classical Regime.

Its form guarantees damping of initial intereference.

• Both of these properties are characteristic of Deco-

herence

BUT
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Both Classical and Quantum Particle Decay into a

Mixture of States With Each State Expressing Cor-

relations Between the Two Systems, i.e. Quantum

Entanglement!. This means

– We cannot assign properties to individual sub-

systems.

– The Stationarity Property and damping of in-

tereference Expected with Decoherence is not

Enough to Ensure Classicality.

THUS
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Decoherence Cannot Solve the Measurement Problem!
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To be Done...
Can we at least say something about the effective

equations of Motion?

• Effective Equations: It is an expected feature that
the equations of motion for the ”Classical” particle
are:

MxẌ +Mxω
2
x
X + λ2

∫ t
0
dt′G(t, t′)X(t′)

= λyΣ0
cosωyt+ λ

ky

ωy
sinωyt

The ”Classical” Equations of Motion of the Quan-
tum System act as a Forcing Term with initial data
distributed according to its initial Wigner Function.
Remains to be checked...
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• Examine Different Model: The quantum particle in-

teracts with an environment as well. Will this lead

to different results concerning Quantum Entangle-

ment?

– In this model the Classical Particle is to be inter-

preted as a measuring device just recording but

not inducing Classiclality.

• Examine connection to traditional (Semiclassical)

approach and if any meaning can be given to it.
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