Effective Equations of Motion,
Decoherence and Backreaction

(In Preperation)

Andreas Zoupas

Department of Mechanical Engineering,

University of T hessaly.
anzoupas@uth.gr



Question: what is the Nature of Coupling Quan-
tum to Classical? Is it Possible to Construct a Consis-

tent Model for Dynamical Coupling Between Quantum
and Classical Systems?

e Quantum Measurement

e Systems Lying in the Domain Between The Fully
Classical and Quantum Regimes



e Semiclassical Theories (e.g. Semiclassical Gravity)

(Traditional approach: Couple to mean values)



Our Aims:

e Derive from First Principles the Backreaction of
Quantum Degrees of Freedom to Classical ones in
the Context of

e Test Features of Decoherence in Relation to Clas-
sicality



The Model

Particle(Classical)(could be interpreted as a mea-
suring device) couples to a Thermal Bath of Har-

monic Oscillators and to Another Particle (Quan-
tum). Models.

We Expect that coupling to the Environment in-
duces decoherence and hence Classicality (77)

The Technique

and the



Detailed Description of the Model

e Whole System is Closed: A Thermal Bath of Har-
monic Oscillators couples Linearly in Position with
the Classical Particle which in turn Interacts with
the Quantum Particle linearly in position. Dynam-
iIcs governed by the Hamiltonian:
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e \We Trace out the Environmental Degrees of Free-
dom:



Some Machinery...

Full Density Operator Evolution

p(t) = J(t, to)p(to)
In position representation the Propagator .J is:
J(z,q,2', ¢, t|x;, qi, 75, q;, 0) =
’C(xaqatlx%Q’i)O)K:*(x/a q/7t|${£7qgao)

T q ()
= Dx | Dgqgexp lgS[x, q]]

Lg q;

e Lar ot
X / Dx / exp [——S[x . q ]]
2! d h

with operator K the evolution operator for the wave
functions.



Reduced Density Operator: Suppose

takes the form, p(z,q; 2’,q"), in position
representation, then the Reduced Density Opera-
tor for the x degrees of freedom (recall marginal
distribution in probability theory) is given by,

“+ o0 “+ o0
pr(z,x’) = / dq/ dq’ §(q—¢)

— 0 — 00



Model Continued...

Time Evolution for the Reduced Density Operator
of Classical+Quantum System:
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Assumptions

— The initial density operator is taken to be fac-
tored



— The environment is taken to be Ohmic and is
assumed to start in a Thermal State.

— We work in the Fokker-Planck limit and neglect
dissipation.

J(Xfyij/y; 1 Xoye, X[y, 0) May then be evaluated
but Most fmportant can be expressed as:
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With the unnormalized
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Expression for Kz(X t| XY, 0):
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Asymptotic Behavior: Evaluation of Path Integral
shows that in the Long Time Limit
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where

Cij, Cs — —— > parameters...

o? < KT/h? — — > constant
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Most Important Feature of Kz(X,y,,t|X,yy,0):

95

Initial and Final Degrees of Freedom

are Decoupled!
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With Redefinitions:
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(X 1y, Pz Qp Dy Gyy) is @ 2-Dimensional Gaussian.

It Satisfies a Generalized Uncertainty Relation
(A(X)2(A(P))? — Rz = (AG)N*(A(y)° — Ry

;2 2
_ M 162
4 Ac

Ry = 3(XPp+ P X) — (X)(pX) ( similarly for Ry) and
Ac=4Im(C11)Im(Cors) — ImQ(Cll). The general-
ized uncertainty relation is Constant with Time but
Not Necessarily Minimized.
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The Density Operator

Calculations yield that
(X pyp Xyl =
/ dPydQzdpydqy [(Fr Qu Dy qy. t)

X (Xfyf|P;U Qx Py qy){(Pr Qz py Qy|X}y}>

Where f(P; Qs py qy,t) is Positive by Construction.

THIS IS THE MAIN RESULT
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Discussion

The Density operator Acquires a Stationary Form,
prerequisite for a Classical Regime.

Its form guarantees damping of initial intereference.

e Both of these properties are characteristic of

BUT
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Both Classical and Quantum Particle Decay into a
Mixture of States With Each State Expressing Cor-
relations Between the Two Systems, i.e. Quantum
Entanglement!. This means

— We cannot assign properties to individual sub-
systems.

— The Stationarity Property and damping of in-
tereference Expected with IS not
Enough to Ensure Classicality.

THUS
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Decoherence Cannot Solve the Measurement Problem!
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To be Done...

Can we at least say something about the effective
equations of Motion?

e Effective Equations: It is an expected feature that
the equations of motion for the " Classical” particle
are:
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The " Classical” Equations of Motion of the Quan-
tum System act as a with initial data

distributed according to its
Remains to be checked...
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e Examine Different Model: The quantum particle in-
teracts with an environment as well. Will this lead
to different results concerning Quantum Entangle-
ment?

— In this model the Classical Particle is to be inter-
preted as a measuring device just recording but
not inducing Classiclality.

e Examine connection to traditional (Semiclassical)
approach and if any meaning can be given to it.
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